Annotation of rpl/lapack/lapack/ztzrqf.f, revision 1.10

1.10    ! bertrand    1: *> \brief \b ZTZRQF
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZTZRQF + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztzrqf.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztzrqf.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztzrqf.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZTZRQF( M, N, A, LDA, TAU, INFO )
        !            22: * 
        !            23: *       .. Scalar Arguments ..
        !            24: *       INTEGER            INFO, LDA, M, N
        !            25: *       ..
        !            26: *       .. Array Arguments ..
        !            27: *       COMPLEX*16         A( LDA, * ), TAU( * )
        !            28: *       ..
        !            29: *  
        !            30: *
        !            31: *> \par Purpose:
        !            32: *  =============
        !            33: *>
        !            34: *> \verbatim
        !            35: *>
        !            36: *> This routine is deprecated and has been replaced by routine ZTZRZF.
        !            37: *>
        !            38: *> ZTZRQF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A
        !            39: *> to upper triangular form by means of unitary transformations.
        !            40: *>
        !            41: *> The upper trapezoidal matrix A is factored as
        !            42: *>
        !            43: *>    A = ( R  0 ) * Z,
        !            44: *>
        !            45: *> where Z is an N-by-N unitary matrix and R is an M-by-M upper
        !            46: *> triangular matrix.
        !            47: *> \endverbatim
        !            48: *
        !            49: *  Arguments:
        !            50: *  ==========
        !            51: *
        !            52: *> \param[in] M
        !            53: *> \verbatim
        !            54: *>          M is INTEGER
        !            55: *>          The number of rows of the matrix A.  M >= 0.
        !            56: *> \endverbatim
        !            57: *>
        !            58: *> \param[in] N
        !            59: *> \verbatim
        !            60: *>          N is INTEGER
        !            61: *>          The number of columns of the matrix A.  N >= M.
        !            62: *> \endverbatim
        !            63: *>
        !            64: *> \param[in,out] A
        !            65: *> \verbatim
        !            66: *>          A is COMPLEX*16 array, dimension (LDA,N)
        !            67: *>          On entry, the leading M-by-N upper trapezoidal part of the
        !            68: *>          array A must contain the matrix to be factorized.
        !            69: *>          On exit, the leading M-by-M upper triangular part of A
        !            70: *>          contains the upper triangular matrix R, and elements M+1 to
        !            71: *>          N of the first M rows of A, with the array TAU, represent the
        !            72: *>          unitary matrix Z as a product of M elementary reflectors.
        !            73: *> \endverbatim
        !            74: *>
        !            75: *> \param[in] LDA
        !            76: *> \verbatim
        !            77: *>          LDA is INTEGER
        !            78: *>          The leading dimension of the array A.  LDA >= max(1,M).
        !            79: *> \endverbatim
        !            80: *>
        !            81: *> \param[out] TAU
        !            82: *> \verbatim
        !            83: *>          TAU is COMPLEX*16 array, dimension (M)
        !            84: *>          The scalar factors of the elementary reflectors.
        !            85: *> \endverbatim
        !            86: *>
        !            87: *> \param[out] INFO
        !            88: *> \verbatim
        !            89: *>          INFO is INTEGER
        !            90: *>          = 0: successful exit
        !            91: *>          < 0: if INFO = -i, the i-th argument had an illegal value
        !            92: *> \endverbatim
        !            93: *
        !            94: *  Authors:
        !            95: *  ========
        !            96: *
        !            97: *> \author Univ. of Tennessee 
        !            98: *> \author Univ. of California Berkeley 
        !            99: *> \author Univ. of Colorado Denver 
        !           100: *> \author NAG Ltd. 
        !           101: *
        !           102: *> \date November 2011
        !           103: *
        !           104: *> \ingroup complex16OTHERcomputational
        !           105: *
        !           106: *> \par Further Details:
        !           107: *  =====================
        !           108: *>
        !           109: *> \verbatim
        !           110: *>
        !           111: *>  The  factorization is obtained by Householder's method.  The kth
        !           112: *>  transformation matrix, Z( k ), whose conjugate transpose is used to
        !           113: *>  introduce zeros into the (m - k + 1)th row of A, is given in the form
        !           114: *>
        !           115: *>     Z( k ) = ( I     0   ),
        !           116: *>              ( 0  T( k ) )
        !           117: *>
        !           118: *>  where
        !           119: *>
        !           120: *>     T( k ) = I - tau*u( k )*u( k )**H,   u( k ) = (   1    ),
        !           121: *>                                                   (   0    )
        !           122: *>                                                   ( z( k ) )
        !           123: *>
        !           124: *>  tau is a scalar and z( k ) is an ( n - m ) element vector.
        !           125: *>  tau and z( k ) are chosen to annihilate the elements of the kth row
        !           126: *>  of X.
        !           127: *>
        !           128: *>  The scalar tau is returned in the kth element of TAU and the vector
        !           129: *>  u( k ) in the kth row of A, such that the elements of z( k ) are
        !           130: *>  in  a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
        !           131: *>  the upper triangular part of A.
        !           132: *>
        !           133: *>  Z is given by
        !           134: *>
        !           135: *>     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).
        !           136: *> \endverbatim
        !           137: *>
        !           138: *  =====================================================================
1.1       bertrand  139:       SUBROUTINE ZTZRQF( M, N, A, LDA, TAU, INFO )
                    140: *
1.10    ! bertrand  141: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  142: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    143: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.10    ! bertrand  144: *     November 2011
1.1       bertrand  145: *
                    146: *     .. Scalar Arguments ..
                    147:       INTEGER            INFO, LDA, M, N
                    148: *     ..
                    149: *     .. Array Arguments ..
                    150:       COMPLEX*16         A( LDA, * ), TAU( * )
                    151: *     ..
                    152: *
                    153: * =====================================================================
                    154: *
                    155: *     .. Parameters ..
                    156:       COMPLEX*16         CONE, CZERO
                    157:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ),
                    158:      $                   CZERO = ( 0.0D+0, 0.0D+0 ) )
                    159: *     ..
                    160: *     .. Local Scalars ..
                    161:       INTEGER            I, K, M1
                    162:       COMPLEX*16         ALPHA
                    163: *     ..
                    164: *     .. Intrinsic Functions ..
                    165:       INTRINSIC          DCONJG, MAX, MIN
                    166: *     ..
                    167: *     .. External Subroutines ..
                    168:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZGEMV, ZGERC, ZLACGV,
1.5       bertrand  169:      $                   ZLARFG
1.1       bertrand  170: *     ..
                    171: *     .. Executable Statements ..
                    172: *
                    173: *     Test the input parameters.
                    174: *
                    175:       INFO = 0
                    176:       IF( M.LT.0 ) THEN
                    177:          INFO = -1
                    178:       ELSE IF( N.LT.M ) THEN
                    179:          INFO = -2
                    180:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    181:          INFO = -4
                    182:       END IF
                    183:       IF( INFO.NE.0 ) THEN
                    184:          CALL XERBLA( 'ZTZRQF', -INFO )
                    185:          RETURN
                    186:       END IF
                    187: *
                    188: *     Perform the factorization.
                    189: *
                    190:       IF( M.EQ.0 )
                    191:      $   RETURN
                    192:       IF( M.EQ.N ) THEN
                    193:          DO 10 I = 1, N
                    194:             TAU( I ) = CZERO
                    195:    10    CONTINUE
                    196:       ELSE
                    197:          M1 = MIN( M+1, N )
                    198:          DO 20 K = M, 1, -1
                    199: *
                    200: *           Use a Householder reflection to zero the kth row of A.
                    201: *           First set up the reflection.
                    202: *
                    203:             A( K, K ) = DCONJG( A( K, K ) )
                    204:             CALL ZLACGV( N-M, A( K, M1 ), LDA )
                    205:             ALPHA = A( K, K )
1.5       bertrand  206:             CALL ZLARFG( N-M+1, ALPHA, A( K, M1 ), LDA, TAU( K ) )
1.1       bertrand  207:             A( K, K ) = ALPHA
                    208:             TAU( K ) = DCONJG( TAU( K ) )
                    209: *
                    210:             IF( TAU( K ).NE.CZERO .AND. K.GT.1 ) THEN
                    211: *
1.9       bertrand  212: *              We now perform the operation  A := A*P( k )**H.
1.1       bertrand  213: *
                    214: *              Use the first ( k - 1 ) elements of TAU to store  a( k ),
                    215: *              where  a( k ) consists of the first ( k - 1 ) elements of
                    216: *              the  kth column  of  A.  Also  let  B  denote  the  first
                    217: *              ( k - 1 ) rows of the last ( n - m ) columns of A.
                    218: *
                    219:                CALL ZCOPY( K-1, A( 1, K ), 1, TAU, 1 )
                    220: *
                    221: *              Form   w = a( k ) + B*z( k )  in TAU.
                    222: *
                    223:                CALL ZGEMV( 'No transpose', K-1, N-M, CONE, A( 1, M1 ),
                    224:      $                     LDA, A( K, M1 ), LDA, CONE, TAU, 1 )
                    225: *
                    226: *              Now form  a( k ) := a( k ) - conjg(tau)*w
1.9       bertrand  227: *              and       B      := B      - conjg(tau)*w*z( k )**H.
1.1       bertrand  228: *
                    229:                CALL ZAXPY( K-1, -DCONJG( TAU( K ) ), TAU, 1, A( 1, K ),
                    230:      $                     1 )
                    231:                CALL ZGERC( K-1, N-M, -DCONJG( TAU( K ) ), TAU, 1,
                    232:      $                     A( K, M1 ), LDA, A( 1, M1 ), LDA )
                    233:             END IF
                    234:    20    CONTINUE
                    235:       END IF
                    236: *
                    237:       RETURN
                    238: *
                    239: *     End of ZTZRQF
                    240: *
                    241:       END

CVSweb interface <joel.bertrand@systella.fr>