Annotation of rpl/lapack/lapack/ztzrqf.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZTZRQF( M, N, A, LDA, TAU, INFO )
        !             2: *
        !             3: *  -- LAPACK routine (version 3.2) --
        !             4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             6: *     November 2006
        !             7: *
        !             8: *     .. Scalar Arguments ..
        !             9:       INTEGER            INFO, LDA, M, N
        !            10: *     ..
        !            11: *     .. Array Arguments ..
        !            12:       COMPLEX*16         A( LDA, * ), TAU( * )
        !            13: *     ..
        !            14: *
        !            15: *  Purpose
        !            16: *  =======
        !            17: *
        !            18: *  This routine is deprecated and has been replaced by routine ZTZRZF.
        !            19: *
        !            20: *  ZTZRQF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A
        !            21: *  to upper triangular form by means of unitary transformations.
        !            22: *
        !            23: *  The upper trapezoidal matrix A is factored as
        !            24: *
        !            25: *     A = ( R  0 ) * Z,
        !            26: *
        !            27: *  where Z is an N-by-N unitary matrix and R is an M-by-M upper
        !            28: *  triangular matrix.
        !            29: *
        !            30: *  Arguments
        !            31: *  =========
        !            32: *
        !            33: *  M       (input) INTEGER
        !            34: *          The number of rows of the matrix A.  M >= 0.
        !            35: *
        !            36: *  N       (input) INTEGER
        !            37: *          The number of columns of the matrix A.  N >= M.
        !            38: *
        !            39: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
        !            40: *          On entry, the leading M-by-N upper trapezoidal part of the
        !            41: *          array A must contain the matrix to be factorized.
        !            42: *          On exit, the leading M-by-M upper triangular part of A
        !            43: *          contains the upper triangular matrix R, and elements M+1 to
        !            44: *          N of the first M rows of A, with the array TAU, represent the
        !            45: *          unitary matrix Z as a product of M elementary reflectors.
        !            46: *
        !            47: *  LDA     (input) INTEGER
        !            48: *          The leading dimension of the array A.  LDA >= max(1,M).
        !            49: *
        !            50: *  TAU     (output) COMPLEX*16 array, dimension (M)
        !            51: *          The scalar factors of the elementary reflectors.
        !            52: *
        !            53: *  INFO    (output) INTEGER
        !            54: *          = 0: successful exit
        !            55: *          < 0: if INFO = -i, the i-th argument had an illegal value
        !            56: *
        !            57: *  Further Details
        !            58: *  ===============
        !            59: *
        !            60: *  The  factorization is obtained by Householder's method.  The kth
        !            61: *  transformation matrix, Z( k ), whose conjugate transpose is used to
        !            62: *  introduce zeros into the (m - k + 1)th row of A, is given in the form
        !            63: *
        !            64: *     Z( k ) = ( I     0   ),
        !            65: *              ( 0  T( k ) )
        !            66: *
        !            67: *  where
        !            68: *
        !            69: *     T( k ) = I - tau*u( k )*u( k )',   u( k ) = (   1    ),
        !            70: *                                                 (   0    )
        !            71: *                                                 ( z( k ) )
        !            72: *
        !            73: *  tau is a scalar and z( k ) is an ( n - m ) element vector.
        !            74: *  tau and z( k ) are chosen to annihilate the elements of the kth row
        !            75: *  of X.
        !            76: *
        !            77: *  The scalar tau is returned in the kth element of TAU and the vector
        !            78: *  u( k ) in the kth row of A, such that the elements of z( k ) are
        !            79: *  in  a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
        !            80: *  the upper triangular part of A.
        !            81: *
        !            82: *  Z is given by
        !            83: *
        !            84: *     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).
        !            85: *
        !            86: * =====================================================================
        !            87: *
        !            88: *     .. Parameters ..
        !            89:       COMPLEX*16         CONE, CZERO
        !            90:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ),
        !            91:      $                   CZERO = ( 0.0D+0, 0.0D+0 ) )
        !            92: *     ..
        !            93: *     .. Local Scalars ..
        !            94:       INTEGER            I, K, M1
        !            95:       COMPLEX*16         ALPHA
        !            96: *     ..
        !            97: *     .. Intrinsic Functions ..
        !            98:       INTRINSIC          DCONJG, MAX, MIN
        !            99: *     ..
        !           100: *     .. External Subroutines ..
        !           101:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZGEMV, ZGERC, ZLACGV,
        !           102:      $                   ZLARFP
        !           103: *     ..
        !           104: *     .. Executable Statements ..
        !           105: *
        !           106: *     Test the input parameters.
        !           107: *
        !           108:       INFO = 0
        !           109:       IF( M.LT.0 ) THEN
        !           110:          INFO = -1
        !           111:       ELSE IF( N.LT.M ) THEN
        !           112:          INFO = -2
        !           113:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
        !           114:          INFO = -4
        !           115:       END IF
        !           116:       IF( INFO.NE.0 ) THEN
        !           117:          CALL XERBLA( 'ZTZRQF', -INFO )
        !           118:          RETURN
        !           119:       END IF
        !           120: *
        !           121: *     Perform the factorization.
        !           122: *
        !           123:       IF( M.EQ.0 )
        !           124:      $   RETURN
        !           125:       IF( M.EQ.N ) THEN
        !           126:          DO 10 I = 1, N
        !           127:             TAU( I ) = CZERO
        !           128:    10    CONTINUE
        !           129:       ELSE
        !           130:          M1 = MIN( M+1, N )
        !           131:          DO 20 K = M, 1, -1
        !           132: *
        !           133: *           Use a Householder reflection to zero the kth row of A.
        !           134: *           First set up the reflection.
        !           135: *
        !           136:             A( K, K ) = DCONJG( A( K, K ) )
        !           137:             CALL ZLACGV( N-M, A( K, M1 ), LDA )
        !           138:             ALPHA = A( K, K )
        !           139:             CALL ZLARFP( N-M+1, ALPHA, A( K, M1 ), LDA, TAU( K ) )
        !           140:             A( K, K ) = ALPHA
        !           141:             TAU( K ) = DCONJG( TAU( K ) )
        !           142: *
        !           143:             IF( TAU( K ).NE.CZERO .AND. K.GT.1 ) THEN
        !           144: *
        !           145: *              We now perform the operation  A := A*P( k )'.
        !           146: *
        !           147: *              Use the first ( k - 1 ) elements of TAU to store  a( k ),
        !           148: *              where  a( k ) consists of the first ( k - 1 ) elements of
        !           149: *              the  kth column  of  A.  Also  let  B  denote  the  first
        !           150: *              ( k - 1 ) rows of the last ( n - m ) columns of A.
        !           151: *
        !           152:                CALL ZCOPY( K-1, A( 1, K ), 1, TAU, 1 )
        !           153: *
        !           154: *              Form   w = a( k ) + B*z( k )  in TAU.
        !           155: *
        !           156:                CALL ZGEMV( 'No transpose', K-1, N-M, CONE, A( 1, M1 ),
        !           157:      $                     LDA, A( K, M1 ), LDA, CONE, TAU, 1 )
        !           158: *
        !           159: *              Now form  a( k ) := a( k ) - conjg(tau)*w
        !           160: *              and       B      := B      - conjg(tau)*w*z( k )'.
        !           161: *
        !           162:                CALL ZAXPY( K-1, -DCONJG( TAU( K ) ), TAU, 1, A( 1, K ),
        !           163:      $                     1 )
        !           164:                CALL ZGERC( K-1, N-M, -DCONJG( TAU( K ) ), TAU, 1,
        !           165:      $                     A( K, M1 ), LDA, A( 1, M1 ), LDA )
        !           166:             END IF
        !           167:    20    CONTINUE
        !           168:       END IF
        !           169: *
        !           170:       RETURN
        !           171: *
        !           172: *     End of ZTZRQF
        !           173: *
        !           174:       END

CVSweb interface <joel.bertrand@systella.fr>