File:  [local] / rpl / lapack / lapack / ztrsna.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:42 2023 UTC (9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZTRSNA
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZTRSNA + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztrsna.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztrsna.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztrsna.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZTRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
   22: *                          LDVR, S, SEP, MM, M, WORK, LDWORK, RWORK,
   23: *                          INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          HOWMNY, JOB
   27: *       INTEGER            INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       LOGICAL            SELECT( * )
   31: *       DOUBLE PRECISION   RWORK( * ), S( * ), SEP( * )
   32: *       COMPLEX*16         T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
   33: *      $                   WORK( LDWORK, * )
   34: *       ..
   35: *
   36: *
   37: *> \par Purpose:
   38: *  =============
   39: *>
   40: *> \verbatim
   41: *>
   42: *> ZTRSNA estimates reciprocal condition numbers for specified
   43: *> eigenvalues and/or right eigenvectors of a complex upper triangular
   44: *> matrix T (or of any matrix Q*T*Q**H with Q unitary).
   45: *> \endverbatim
   46: *
   47: *  Arguments:
   48: *  ==========
   49: *
   50: *> \param[in] JOB
   51: *> \verbatim
   52: *>          JOB is CHARACTER*1
   53: *>          Specifies whether condition numbers are required for
   54: *>          eigenvalues (S) or eigenvectors (SEP):
   55: *>          = 'E': for eigenvalues only (S);
   56: *>          = 'V': for eigenvectors only (SEP);
   57: *>          = 'B': for both eigenvalues and eigenvectors (S and SEP).
   58: *> \endverbatim
   59: *>
   60: *> \param[in] HOWMNY
   61: *> \verbatim
   62: *>          HOWMNY is CHARACTER*1
   63: *>          = 'A': compute condition numbers for all eigenpairs;
   64: *>          = 'S': compute condition numbers for selected eigenpairs
   65: *>                 specified by the array SELECT.
   66: *> \endverbatim
   67: *>
   68: *> \param[in] SELECT
   69: *> \verbatim
   70: *>          SELECT is LOGICAL array, dimension (N)
   71: *>          If HOWMNY = 'S', SELECT specifies the eigenpairs for which
   72: *>          condition numbers are required. To select condition numbers
   73: *>          for the j-th eigenpair, SELECT(j) must be set to .TRUE..
   74: *>          If HOWMNY = 'A', SELECT is not referenced.
   75: *> \endverbatim
   76: *>
   77: *> \param[in] N
   78: *> \verbatim
   79: *>          N is INTEGER
   80: *>          The order of the matrix T. N >= 0.
   81: *> \endverbatim
   82: *>
   83: *> \param[in] T
   84: *> \verbatim
   85: *>          T is COMPLEX*16 array, dimension (LDT,N)
   86: *>          The upper triangular matrix T.
   87: *> \endverbatim
   88: *>
   89: *> \param[in] LDT
   90: *> \verbatim
   91: *>          LDT is INTEGER
   92: *>          The leading dimension of the array T. LDT >= max(1,N).
   93: *> \endverbatim
   94: *>
   95: *> \param[in] VL
   96: *> \verbatim
   97: *>          VL is COMPLEX*16 array, dimension (LDVL,M)
   98: *>          If JOB = 'E' or 'B', VL must contain left eigenvectors of T
   99: *>          (or of any Q*T*Q**H with Q unitary), corresponding to the
  100: *>          eigenpairs specified by HOWMNY and SELECT. The eigenvectors
  101: *>          must be stored in consecutive columns of VL, as returned by
  102: *>          ZHSEIN or ZTREVC.
  103: *>          If JOB = 'V', VL is not referenced.
  104: *> \endverbatim
  105: *>
  106: *> \param[in] LDVL
  107: *> \verbatim
  108: *>          LDVL is INTEGER
  109: *>          The leading dimension of the array VL.
  110: *>          LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N.
  111: *> \endverbatim
  112: *>
  113: *> \param[in] VR
  114: *> \verbatim
  115: *>          VR is COMPLEX*16 array, dimension (LDVR,M)
  116: *>          If JOB = 'E' or 'B', VR must contain right eigenvectors of T
  117: *>          (or of any Q*T*Q**H with Q unitary), corresponding to the
  118: *>          eigenpairs specified by HOWMNY and SELECT. The eigenvectors
  119: *>          must be stored in consecutive columns of VR, as returned by
  120: *>          ZHSEIN or ZTREVC.
  121: *>          If JOB = 'V', VR is not referenced.
  122: *> \endverbatim
  123: *>
  124: *> \param[in] LDVR
  125: *> \verbatim
  126: *>          LDVR is INTEGER
  127: *>          The leading dimension of the array VR.
  128: *>          LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N.
  129: *> \endverbatim
  130: *>
  131: *> \param[out] S
  132: *> \verbatim
  133: *>          S is DOUBLE PRECISION array, dimension (MM)
  134: *>          If JOB = 'E' or 'B', the reciprocal condition numbers of the
  135: *>          selected eigenvalues, stored in consecutive elements of the
  136: *>          array. Thus S(j), SEP(j), and the j-th columns of VL and VR
  137: *>          all correspond to the same eigenpair (but not in general the
  138: *>          j-th eigenpair, unless all eigenpairs are selected).
  139: *>          If JOB = 'V', S is not referenced.
  140: *> \endverbatim
  141: *>
  142: *> \param[out] SEP
  143: *> \verbatim
  144: *>          SEP is DOUBLE PRECISION array, dimension (MM)
  145: *>          If JOB = 'V' or 'B', the estimated reciprocal condition
  146: *>          numbers of the selected eigenvectors, stored in consecutive
  147: *>          elements of the array.
  148: *>          If JOB = 'E', SEP is not referenced.
  149: *> \endverbatim
  150: *>
  151: *> \param[in] MM
  152: *> \verbatim
  153: *>          MM is INTEGER
  154: *>          The number of elements in the arrays S (if JOB = 'E' or 'B')
  155: *>           and/or SEP (if JOB = 'V' or 'B'). MM >= M.
  156: *> \endverbatim
  157: *>
  158: *> \param[out] M
  159: *> \verbatim
  160: *>          M is INTEGER
  161: *>          The number of elements of the arrays S and/or SEP actually
  162: *>          used to store the estimated condition numbers.
  163: *>          If HOWMNY = 'A', M is set to N.
  164: *> \endverbatim
  165: *>
  166: *> \param[out] WORK
  167: *> \verbatim
  168: *>          WORK is COMPLEX*16 array, dimension (LDWORK,N+6)
  169: *>          If JOB = 'E', WORK is not referenced.
  170: *> \endverbatim
  171: *>
  172: *> \param[in] LDWORK
  173: *> \verbatim
  174: *>          LDWORK is INTEGER
  175: *>          The leading dimension of the array WORK.
  176: *>          LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N.
  177: *> \endverbatim
  178: *>
  179: *> \param[out] RWORK
  180: *> \verbatim
  181: *>          RWORK is DOUBLE PRECISION array, dimension (N)
  182: *>          If JOB = 'E', RWORK is not referenced.
  183: *> \endverbatim
  184: *>
  185: *> \param[out] INFO
  186: *> \verbatim
  187: *>          INFO is INTEGER
  188: *>          = 0: successful exit
  189: *>          < 0: if INFO = -i, the i-th argument had an illegal value
  190: *> \endverbatim
  191: *
  192: *  Authors:
  193: *  ========
  194: *
  195: *> \author Univ. of Tennessee
  196: *> \author Univ. of California Berkeley
  197: *> \author Univ. of Colorado Denver
  198: *> \author NAG Ltd.
  199: *
  200: *> \ingroup complex16OTHERcomputational
  201: *
  202: *> \par Further Details:
  203: *  =====================
  204: *>
  205: *> \verbatim
  206: *>
  207: *>  The reciprocal of the condition number of an eigenvalue lambda is
  208: *>  defined as
  209: *>
  210: *>          S(lambda) = |v**H*u| / (norm(u)*norm(v))
  211: *>
  212: *>  where u and v are the right and left eigenvectors of T corresponding
  213: *>  to lambda; v**H denotes the conjugate transpose of v, and norm(u)
  214: *>  denotes the Euclidean norm. These reciprocal condition numbers always
  215: *>  lie between zero (very badly conditioned) and one (very well
  216: *>  conditioned). If n = 1, S(lambda) is defined to be 1.
  217: *>
  218: *>  An approximate error bound for a computed eigenvalue W(i) is given by
  219: *>
  220: *>                      EPS * norm(T) / S(i)
  221: *>
  222: *>  where EPS is the machine precision.
  223: *>
  224: *>  The reciprocal of the condition number of the right eigenvector u
  225: *>  corresponding to lambda is defined as follows. Suppose
  226: *>
  227: *>              T = ( lambda  c  )
  228: *>                  (   0    T22 )
  229: *>
  230: *>  Then the reciprocal condition number is
  231: *>
  232: *>          SEP( lambda, T22 ) = sigma-min( T22 - lambda*I )
  233: *>
  234: *>  where sigma-min denotes the smallest singular value. We approximate
  235: *>  the smallest singular value by the reciprocal of an estimate of the
  236: *>  one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is
  237: *>  defined to be abs(T(1,1)).
  238: *>
  239: *>  An approximate error bound for a computed right eigenvector VR(i)
  240: *>  is given by
  241: *>
  242: *>                      EPS * norm(T) / SEP(i)
  243: *> \endverbatim
  244: *>
  245: *  =====================================================================
  246:       SUBROUTINE ZTRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
  247:      $                   LDVR, S, SEP, MM, M, WORK, LDWORK, RWORK,
  248:      $                   INFO )
  249: *
  250: *  -- LAPACK computational routine --
  251: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  252: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  253: *
  254: *     .. Scalar Arguments ..
  255:       CHARACTER          HOWMNY, JOB
  256:       INTEGER            INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N
  257: *     ..
  258: *     .. Array Arguments ..
  259:       LOGICAL            SELECT( * )
  260:       DOUBLE PRECISION   RWORK( * ), S( * ), SEP( * )
  261:       COMPLEX*16         T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
  262:      $                   WORK( LDWORK, * )
  263: *     ..
  264: *
  265: *  =====================================================================
  266: *
  267: *     .. Parameters ..
  268:       DOUBLE PRECISION   ZERO, ONE
  269:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D0+0 )
  270: *     ..
  271: *     .. Local Scalars ..
  272:       LOGICAL            SOMCON, WANTBH, WANTS, WANTSP
  273:       CHARACTER          NORMIN
  274:       INTEGER            I, IERR, IX, J, K, KASE, KS
  275:       DOUBLE PRECISION   BIGNUM, EPS, EST, LNRM, RNRM, SCALE, SMLNUM,
  276:      $                   XNORM
  277:       COMPLEX*16         CDUM, PROD
  278: *     ..
  279: *     .. Local Arrays ..
  280:       INTEGER            ISAVE( 3 )
  281:       COMPLEX*16         DUMMY( 1 )
  282: *     ..
  283: *     .. External Functions ..
  284:       LOGICAL            LSAME
  285:       INTEGER            IZAMAX
  286:       DOUBLE PRECISION   DLAMCH, DZNRM2
  287:       COMPLEX*16         ZDOTC
  288:       EXTERNAL           LSAME, IZAMAX, DLAMCH, DZNRM2, ZDOTC
  289: *     ..
  290: *     .. External Subroutines ..
  291:       EXTERNAL           XERBLA, ZDRSCL, ZLACN2, ZLACPY, ZLATRS, ZTREXC,
  292:      $                   DLABAD
  293: *     ..
  294: *     .. Intrinsic Functions ..
  295:       INTRINSIC          ABS, DBLE, DIMAG, MAX
  296: *     ..
  297: *     .. Statement Functions ..
  298:       DOUBLE PRECISION   CABS1
  299: *     ..
  300: *     .. Statement Function definitions ..
  301:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
  302: *     ..
  303: *     .. Executable Statements ..
  304: *
  305: *     Decode and test the input parameters
  306: *
  307:       WANTBH = LSAME( JOB, 'B' )
  308:       WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
  309:       WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH
  310: *
  311:       SOMCON = LSAME( HOWMNY, 'S' )
  312: *
  313: *     Set M to the number of eigenpairs for which condition numbers are
  314: *     to be computed.
  315: *
  316:       IF( SOMCON ) THEN
  317:          M = 0
  318:          DO 10 J = 1, N
  319:             IF( SELECT( J ) )
  320:      $         M = M + 1
  321:    10    CONTINUE
  322:       ELSE
  323:          M = N
  324:       END IF
  325: *
  326:       INFO = 0
  327:       IF( .NOT.WANTS .AND. .NOT.WANTSP ) THEN
  328:          INFO = -1
  329:       ELSE IF( .NOT.LSAME( HOWMNY, 'A' ) .AND. .NOT.SOMCON ) THEN
  330:          INFO = -2
  331:       ELSE IF( N.LT.0 ) THEN
  332:          INFO = -4
  333:       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
  334:          INFO = -6
  335:       ELSE IF( LDVL.LT.1 .OR. ( WANTS .AND. LDVL.LT.N ) ) THEN
  336:          INFO = -8
  337:       ELSE IF( LDVR.LT.1 .OR. ( WANTS .AND. LDVR.LT.N ) ) THEN
  338:          INFO = -10
  339:       ELSE IF( MM.LT.M ) THEN
  340:          INFO = -13
  341:       ELSE IF( LDWORK.LT.1 .OR. ( WANTSP .AND. LDWORK.LT.N ) ) THEN
  342:          INFO = -16
  343:       END IF
  344:       IF( INFO.NE.0 ) THEN
  345:          CALL XERBLA( 'ZTRSNA', -INFO )
  346:          RETURN
  347:       END IF
  348: *
  349: *     Quick return if possible
  350: *
  351:       IF( N.EQ.0 )
  352:      $   RETURN
  353: *
  354:       IF( N.EQ.1 ) THEN
  355:          IF( SOMCON ) THEN
  356:             IF( .NOT.SELECT( 1 ) )
  357:      $         RETURN
  358:          END IF
  359:          IF( WANTS )
  360:      $      S( 1 ) = ONE
  361:          IF( WANTSP )
  362:      $      SEP( 1 ) = ABS( T( 1, 1 ) )
  363:          RETURN
  364:       END IF
  365: *
  366: *     Get machine constants
  367: *
  368:       EPS = DLAMCH( 'P' )
  369:       SMLNUM = DLAMCH( 'S' ) / EPS
  370:       BIGNUM = ONE / SMLNUM
  371:       CALL DLABAD( SMLNUM, BIGNUM )
  372: *
  373:       KS = 1
  374:       DO 50 K = 1, N
  375: *
  376:          IF( SOMCON ) THEN
  377:             IF( .NOT.SELECT( K ) )
  378:      $         GO TO 50
  379:          END IF
  380: *
  381:          IF( WANTS ) THEN
  382: *
  383: *           Compute the reciprocal condition number of the k-th
  384: *           eigenvalue.
  385: *
  386:             PROD = ZDOTC( N, VR( 1, KS ), 1, VL( 1, KS ), 1 )
  387:             RNRM = DZNRM2( N, VR( 1, KS ), 1 )
  388:             LNRM = DZNRM2( N, VL( 1, KS ), 1 )
  389:             S( KS ) = ABS( PROD ) / ( RNRM*LNRM )
  390: *
  391:          END IF
  392: *
  393:          IF( WANTSP ) THEN
  394: *
  395: *           Estimate the reciprocal condition number of the k-th
  396: *           eigenvector.
  397: *
  398: *           Copy the matrix T to the array WORK and swap the k-th
  399: *           diagonal element to the (1,1) position.
  400: *
  401:             CALL ZLACPY( 'Full', N, N, T, LDT, WORK, LDWORK )
  402:             CALL ZTREXC( 'No Q', N, WORK, LDWORK, DUMMY, 1, K, 1, IERR )
  403: *
  404: *           Form  C = T22 - lambda*I in WORK(2:N,2:N).
  405: *
  406:             DO 20 I = 2, N
  407:                WORK( I, I ) = WORK( I, I ) - WORK( 1, 1 )
  408:    20       CONTINUE
  409: *
  410: *           Estimate a lower bound for the 1-norm of inv(C**H). The 1st
  411: *           and (N+1)th columns of WORK are used to store work vectors.
  412: *
  413:             SEP( KS ) = ZERO
  414:             EST = ZERO
  415:             KASE = 0
  416:             NORMIN = 'N'
  417:    30       CONTINUE
  418:             CALL ZLACN2( N-1, WORK( 1, N+1 ), WORK, EST, KASE, ISAVE )
  419: *
  420:             IF( KASE.NE.0 ) THEN
  421:                IF( KASE.EQ.1 ) THEN
  422: *
  423: *                 Solve C**H*x = scale*b
  424: *
  425:                   CALL ZLATRS( 'Upper', 'Conjugate transpose',
  426:      $                         'Nonunit', NORMIN, N-1, WORK( 2, 2 ),
  427:      $                         LDWORK, WORK, SCALE, RWORK, IERR )
  428:                ELSE
  429: *
  430: *                 Solve C*x = scale*b
  431: *
  432:                   CALL ZLATRS( 'Upper', 'No transpose', 'Nonunit',
  433:      $                         NORMIN, N-1, WORK( 2, 2 ), LDWORK, WORK,
  434:      $                         SCALE, RWORK, IERR )
  435:                END IF
  436:                NORMIN = 'Y'
  437:                IF( SCALE.NE.ONE ) THEN
  438: *
  439: *                 Multiply by 1/SCALE if doing so will not cause
  440: *                 overflow.
  441: *
  442:                   IX = IZAMAX( N-1, WORK, 1 )
  443:                   XNORM = CABS1( WORK( IX, 1 ) )
  444:                   IF( SCALE.LT.XNORM*SMLNUM .OR. SCALE.EQ.ZERO )
  445:      $               GO TO 40
  446:                   CALL ZDRSCL( N, SCALE, WORK, 1 )
  447:                END IF
  448:                GO TO 30
  449:             END IF
  450: *
  451:             SEP( KS ) = ONE / MAX( EST, SMLNUM )
  452:          END IF
  453: *
  454:    40    CONTINUE
  455:          KS = KS + 1
  456:    50 CONTINUE
  457:       RETURN
  458: *
  459: *     End of ZTRSNA
  460: *
  461:       END

CVSweb interface <joel.bertrand@systella.fr>