File:  [local] / rpl / lapack / lapack / ztrsna.f
Revision 1.2: download - view: text, annotated - select for diffs - revision graph
Wed Apr 21 13:45:40 2010 UTC (14 years, 1 month ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_17, rpl-4_0_16, rpl-4_0_15, HEAD
En route pour la 4.0.15 !

    1:       SUBROUTINE ZTRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
    2:      $                   LDVR, S, SEP, MM, M, WORK, LDWORK, RWORK,
    3:      $                   INFO )
    4: *
    5: *  -- LAPACK routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH.
   11: *
   12: *     .. Scalar Arguments ..
   13:       CHARACTER          HOWMNY, JOB
   14:       INTEGER            INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N
   15: *     ..
   16: *     .. Array Arguments ..
   17:       LOGICAL            SELECT( * )
   18:       DOUBLE PRECISION   RWORK( * ), S( * ), SEP( * )
   19:       COMPLEX*16         T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
   20:      $                   WORK( LDWORK, * )
   21: *     ..
   22: *
   23: *  Purpose
   24: *  =======
   25: *
   26: *  ZTRSNA estimates reciprocal condition numbers for specified
   27: *  eigenvalues and/or right eigenvectors of a complex upper triangular
   28: *  matrix T (or of any matrix Q*T*Q**H with Q unitary).
   29: *
   30: *  Arguments
   31: *  =========
   32: *
   33: *  JOB     (input) CHARACTER*1
   34: *          Specifies whether condition numbers are required for
   35: *          eigenvalues (S) or eigenvectors (SEP):
   36: *          = 'E': for eigenvalues only (S);
   37: *          = 'V': for eigenvectors only (SEP);
   38: *          = 'B': for both eigenvalues and eigenvectors (S and SEP).
   39: *
   40: *  HOWMNY  (input) CHARACTER*1
   41: *          = 'A': compute condition numbers for all eigenpairs;
   42: *          = 'S': compute condition numbers for selected eigenpairs
   43: *                 specified by the array SELECT.
   44: *
   45: *  SELECT  (input) LOGICAL array, dimension (N)
   46: *          If HOWMNY = 'S', SELECT specifies the eigenpairs for which
   47: *          condition numbers are required. To select condition numbers
   48: *          for the j-th eigenpair, SELECT(j) must be set to .TRUE..
   49: *          If HOWMNY = 'A', SELECT is not referenced.
   50: *
   51: *  N       (input) INTEGER
   52: *          The order of the matrix T. N >= 0.
   53: *
   54: *  T       (input) COMPLEX*16 array, dimension (LDT,N)
   55: *          The upper triangular matrix T.
   56: *
   57: *  LDT     (input) INTEGER
   58: *          The leading dimension of the array T. LDT >= max(1,N).
   59: *
   60: *  VL      (input) COMPLEX*16 array, dimension (LDVL,M)
   61: *          If JOB = 'E' or 'B', VL must contain left eigenvectors of T
   62: *          (or of any Q*T*Q**H with Q unitary), corresponding to the
   63: *          eigenpairs specified by HOWMNY and SELECT. The eigenvectors
   64: *          must be stored in consecutive columns of VL, as returned by
   65: *          ZHSEIN or ZTREVC.
   66: *          If JOB = 'V', VL is not referenced.
   67: *
   68: *  LDVL    (input) INTEGER
   69: *          The leading dimension of the array VL.
   70: *          LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N.
   71: *
   72: *  VR      (input) COMPLEX*16 array, dimension (LDVR,M)
   73: *          If JOB = 'E' or 'B', VR must contain right eigenvectors of T
   74: *          (or of any Q*T*Q**H with Q unitary), corresponding to the
   75: *          eigenpairs specified by HOWMNY and SELECT. The eigenvectors
   76: *          must be stored in consecutive columns of VR, as returned by
   77: *          ZHSEIN or ZTREVC.
   78: *          If JOB = 'V', VR is not referenced.
   79: *
   80: *  LDVR    (input) INTEGER
   81: *          The leading dimension of the array VR.
   82: *          LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N.
   83: *
   84: *  S       (output) DOUBLE PRECISION array, dimension (MM)
   85: *          If JOB = 'E' or 'B', the reciprocal condition numbers of the
   86: *          selected eigenvalues, stored in consecutive elements of the
   87: *          array. Thus S(j), SEP(j), and the j-th columns of VL and VR
   88: *          all correspond to the same eigenpair (but not in general the
   89: *          j-th eigenpair, unless all eigenpairs are selected).
   90: *          If JOB = 'V', S is not referenced.
   91: *
   92: *  SEP     (output) DOUBLE PRECISION array, dimension (MM)
   93: *          If JOB = 'V' or 'B', the estimated reciprocal condition
   94: *          numbers of the selected eigenvectors, stored in consecutive
   95: *          elements of the array.
   96: *          If JOB = 'E', SEP is not referenced.
   97: *
   98: *  MM      (input) INTEGER
   99: *          The number of elements in the arrays S (if JOB = 'E' or 'B')
  100: *           and/or SEP (if JOB = 'V' or 'B'). MM >= M.
  101: *
  102: *  M       (output) INTEGER
  103: *          The number of elements of the arrays S and/or SEP actually
  104: *          used to store the estimated condition numbers.
  105: *          If HOWMNY = 'A', M is set to N.
  106: *
  107: *  WORK    (workspace) COMPLEX*16 array, dimension (LDWORK,N+6)
  108: *          If JOB = 'E', WORK is not referenced.
  109: *
  110: *  LDWORK  (input) INTEGER
  111: *          The leading dimension of the array WORK.
  112: *          LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N.
  113: *
  114: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
  115: *          If JOB = 'E', RWORK is not referenced.
  116: *
  117: *  INFO    (output) INTEGER
  118: *          = 0: successful exit
  119: *          < 0: if INFO = -i, the i-th argument had an illegal value
  120: *
  121: *  Further Details
  122: *  ===============
  123: *
  124: *  The reciprocal of the condition number of an eigenvalue lambda is
  125: *  defined as
  126: *
  127: *          S(lambda) = |v'*u| / (norm(u)*norm(v))
  128: *
  129: *  where u and v are the right and left eigenvectors of T corresponding
  130: *  to lambda; v' denotes the conjugate transpose of v, and norm(u)
  131: *  denotes the Euclidean norm. These reciprocal condition numbers always
  132: *  lie between zero (very badly conditioned) and one (very well
  133: *  conditioned). If n = 1, S(lambda) is defined to be 1.
  134: *
  135: *  An approximate error bound for a computed eigenvalue W(i) is given by
  136: *
  137: *                      EPS * norm(T) / S(i)
  138: *
  139: *  where EPS is the machine precision.
  140: *
  141: *  The reciprocal of the condition number of the right eigenvector u
  142: *  corresponding to lambda is defined as follows. Suppose
  143: *
  144: *              T = ( lambda  c  )
  145: *                  (   0    T22 )
  146: *
  147: *  Then the reciprocal condition number is
  148: *
  149: *          SEP( lambda, T22 ) = sigma-min( T22 - lambda*I )
  150: *
  151: *  where sigma-min denotes the smallest singular value. We approximate
  152: *  the smallest singular value by the reciprocal of an estimate of the
  153: *  one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is
  154: *  defined to be abs(T(1,1)).
  155: *
  156: *  An approximate error bound for a computed right eigenvector VR(i)
  157: *  is given by
  158: *
  159: *                      EPS * norm(T) / SEP(i)
  160: *
  161: *  =====================================================================
  162: *
  163: *     .. Parameters ..
  164:       DOUBLE PRECISION   ZERO, ONE
  165:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D0+0 )
  166: *     ..
  167: *     .. Local Scalars ..
  168:       LOGICAL            SOMCON, WANTBH, WANTS, WANTSP
  169:       CHARACTER          NORMIN
  170:       INTEGER            I, IERR, IX, J, K, KASE, KS
  171:       DOUBLE PRECISION   BIGNUM, EPS, EST, LNRM, RNRM, SCALE, SMLNUM,
  172:      $                   XNORM
  173:       COMPLEX*16         CDUM, PROD
  174: *     ..
  175: *     .. Local Arrays ..
  176:       INTEGER            ISAVE( 3 )
  177:       COMPLEX*16         DUMMY( 1 )
  178: *     ..
  179: *     .. External Functions ..
  180:       LOGICAL            LSAME
  181:       INTEGER            IZAMAX
  182:       DOUBLE PRECISION   DLAMCH, DZNRM2
  183:       COMPLEX*16         ZDOTC
  184:       EXTERNAL           LSAME, IZAMAX, DLAMCH, DZNRM2, ZDOTC
  185: *     ..
  186: *     .. External Subroutines ..
  187:       EXTERNAL           XERBLA, ZDRSCL, ZLACN2, ZLACPY, ZLATRS, ZTREXC
  188: *     ..
  189: *     .. Intrinsic Functions ..
  190:       INTRINSIC          ABS, DBLE, DIMAG, MAX
  191: *     ..
  192: *     .. Statement Functions ..
  193:       DOUBLE PRECISION   CABS1
  194: *     ..
  195: *     .. Statement Function definitions ..
  196:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
  197: *     ..
  198: *     .. Executable Statements ..
  199: *
  200: *     Decode and test the input parameters
  201: *
  202:       WANTBH = LSAME( JOB, 'B' )
  203:       WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
  204:       WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH
  205: *
  206:       SOMCON = LSAME( HOWMNY, 'S' )
  207: *
  208: *     Set M to the number of eigenpairs for which condition numbers are
  209: *     to be computed.
  210: *
  211:       IF( SOMCON ) THEN
  212:          M = 0
  213:          DO 10 J = 1, N
  214:             IF( SELECT( J ) )
  215:      $         M = M + 1
  216:    10    CONTINUE
  217:       ELSE
  218:          M = N
  219:       END IF
  220: *
  221:       INFO = 0
  222:       IF( .NOT.WANTS .AND. .NOT.WANTSP ) THEN
  223:          INFO = -1
  224:       ELSE IF( .NOT.LSAME( HOWMNY, 'A' ) .AND. .NOT.SOMCON ) THEN
  225:          INFO = -2
  226:       ELSE IF( N.LT.0 ) THEN
  227:          INFO = -4
  228:       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
  229:          INFO = -6
  230:       ELSE IF( LDVL.LT.1 .OR. ( WANTS .AND. LDVL.LT.N ) ) THEN
  231:          INFO = -8
  232:       ELSE IF( LDVR.LT.1 .OR. ( WANTS .AND. LDVR.LT.N ) ) THEN
  233:          INFO = -10
  234:       ELSE IF( MM.LT.M ) THEN
  235:          INFO = -13
  236:       ELSE IF( LDWORK.LT.1 .OR. ( WANTSP .AND. LDWORK.LT.N ) ) THEN
  237:          INFO = -16
  238:       END IF
  239:       IF( INFO.NE.0 ) THEN
  240:          CALL XERBLA( 'ZTRSNA', -INFO )
  241:          RETURN
  242:       END IF
  243: *
  244: *     Quick return if possible
  245: *
  246:       IF( N.EQ.0 )
  247:      $   RETURN
  248: *
  249:       IF( N.EQ.1 ) THEN
  250:          IF( SOMCON ) THEN
  251:             IF( .NOT.SELECT( 1 ) )
  252:      $         RETURN
  253:          END IF
  254:          IF( WANTS )
  255:      $      S( 1 ) = ONE
  256:          IF( WANTSP )
  257:      $      SEP( 1 ) = ABS( T( 1, 1 ) )
  258:          RETURN
  259:       END IF
  260: *
  261: *     Get machine constants
  262: *
  263:       EPS = DLAMCH( 'P' )
  264:       SMLNUM = DLAMCH( 'S' ) / EPS
  265:       BIGNUM = ONE / SMLNUM
  266:       CALL DLABAD( SMLNUM, BIGNUM )
  267: *
  268:       KS = 1
  269:       DO 50 K = 1, N
  270: *
  271:          IF( SOMCON ) THEN
  272:             IF( .NOT.SELECT( K ) )
  273:      $         GO TO 50
  274:          END IF
  275: *
  276:          IF( WANTS ) THEN
  277: *
  278: *           Compute the reciprocal condition number of the k-th
  279: *           eigenvalue.
  280: *
  281:             PROD = ZDOTC( N, VR( 1, KS ), 1, VL( 1, KS ), 1 )
  282:             RNRM = DZNRM2( N, VR( 1, KS ), 1 )
  283:             LNRM = DZNRM2( N, VL( 1, KS ), 1 )
  284:             S( KS ) = ABS( PROD ) / ( RNRM*LNRM )
  285: *
  286:          END IF
  287: *
  288:          IF( WANTSP ) THEN
  289: *
  290: *           Estimate the reciprocal condition number of the k-th
  291: *           eigenvector.
  292: *
  293: *           Copy the matrix T to the array WORK and swap the k-th
  294: *           diagonal element to the (1,1) position.
  295: *
  296:             CALL ZLACPY( 'Full', N, N, T, LDT, WORK, LDWORK )
  297:             CALL ZTREXC( 'No Q', N, WORK, LDWORK, DUMMY, 1, K, 1, IERR )
  298: *
  299: *           Form  C = T22 - lambda*I in WORK(2:N,2:N).
  300: *
  301:             DO 20 I = 2, N
  302:                WORK( I, I ) = WORK( I, I ) - WORK( 1, 1 )
  303:    20       CONTINUE
  304: *
  305: *           Estimate a lower bound for the 1-norm of inv(C'). The 1st
  306: *           and (N+1)th columns of WORK are used to store work vectors.
  307: *
  308:             SEP( KS ) = ZERO
  309:             EST = ZERO
  310:             KASE = 0
  311:             NORMIN = 'N'
  312:    30       CONTINUE
  313:             CALL ZLACN2( N-1, WORK( 1, N+1 ), WORK, EST, KASE, ISAVE )
  314: *
  315:             IF( KASE.NE.0 ) THEN
  316:                IF( KASE.EQ.1 ) THEN
  317: *
  318: *                 Solve C'*x = scale*b
  319: *
  320:                   CALL ZLATRS( 'Upper', 'Conjugate transpose',
  321:      $                         'Nonunit', NORMIN, N-1, WORK( 2, 2 ),
  322:      $                         LDWORK, WORK, SCALE, RWORK, IERR )
  323:                ELSE
  324: *
  325: *                 Solve C*x = scale*b
  326: *
  327:                   CALL ZLATRS( 'Upper', 'No transpose', 'Nonunit',
  328:      $                         NORMIN, N-1, WORK( 2, 2 ), LDWORK, WORK,
  329:      $                         SCALE, RWORK, IERR )
  330:                END IF
  331:                NORMIN = 'Y'
  332:                IF( SCALE.NE.ONE ) THEN
  333: *
  334: *                 Multiply by 1/SCALE if doing so will not cause
  335: *                 overflow.
  336: *
  337:                   IX = IZAMAX( N-1, WORK, 1 )
  338:                   XNORM = CABS1( WORK( IX, 1 ) )
  339:                   IF( SCALE.LT.XNORM*SMLNUM .OR. SCALE.EQ.ZERO )
  340:      $               GO TO 40
  341:                   CALL ZDRSCL( N, SCALE, WORK, 1 )
  342:                END IF
  343:                GO TO 30
  344:             END IF
  345: *
  346:             SEP( KS ) = ONE / MAX( EST, SMLNUM )
  347:          END IF
  348: *
  349:    40    CONTINUE
  350:          KS = KS + 1
  351:    50 CONTINUE
  352:       RETURN
  353: *
  354: *     End of ZTRSNA
  355: *
  356:       END

CVSweb interface <joel.bertrand@systella.fr>