Annotation of rpl/lapack/lapack/ztrsna.f, revision 1.9

1.9     ! bertrand    1: *> \brief \b ZTRSNA
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZTRSNA + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztrsna.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztrsna.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztrsna.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZTRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
        !            22: *                          LDVR, S, SEP, MM, M, WORK, LDWORK, RWORK,
        !            23: *                          INFO )
        !            24: * 
        !            25: *       .. Scalar Arguments ..
        !            26: *       CHARACTER          HOWMNY, JOB
        !            27: *       INTEGER            INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N
        !            28: *       ..
        !            29: *       .. Array Arguments ..
        !            30: *       LOGICAL            SELECT( * )
        !            31: *       DOUBLE PRECISION   RWORK( * ), S( * ), SEP( * )
        !            32: *       COMPLEX*16         T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
        !            33: *      $                   WORK( LDWORK, * )
        !            34: *       ..
        !            35: *  
        !            36: *
        !            37: *> \par Purpose:
        !            38: *  =============
        !            39: *>
        !            40: *> \verbatim
        !            41: *>
        !            42: *> ZTRSNA estimates reciprocal condition numbers for specified
        !            43: *> eigenvalues and/or right eigenvectors of a complex upper triangular
        !            44: *> matrix T (or of any matrix Q*T*Q**H with Q unitary).
        !            45: *> \endverbatim
        !            46: *
        !            47: *  Arguments:
        !            48: *  ==========
        !            49: *
        !            50: *> \param[in] JOB
        !            51: *> \verbatim
        !            52: *>          JOB is CHARACTER*1
        !            53: *>          Specifies whether condition numbers are required for
        !            54: *>          eigenvalues (S) or eigenvectors (SEP):
        !            55: *>          = 'E': for eigenvalues only (S);
        !            56: *>          = 'V': for eigenvectors only (SEP);
        !            57: *>          = 'B': for both eigenvalues and eigenvectors (S and SEP).
        !            58: *> \endverbatim
        !            59: *>
        !            60: *> \param[in] HOWMNY
        !            61: *> \verbatim
        !            62: *>          HOWMNY is CHARACTER*1
        !            63: *>          = 'A': compute condition numbers for all eigenpairs;
        !            64: *>          = 'S': compute condition numbers for selected eigenpairs
        !            65: *>                 specified by the array SELECT.
        !            66: *> \endverbatim
        !            67: *>
        !            68: *> \param[in] SELECT
        !            69: *> \verbatim
        !            70: *>          SELECT is LOGICAL array, dimension (N)
        !            71: *>          If HOWMNY = 'S', SELECT specifies the eigenpairs for which
        !            72: *>          condition numbers are required. To select condition numbers
        !            73: *>          for the j-th eigenpair, SELECT(j) must be set to .TRUE..
        !            74: *>          If HOWMNY = 'A', SELECT is not referenced.
        !            75: *> \endverbatim
        !            76: *>
        !            77: *> \param[in] N
        !            78: *> \verbatim
        !            79: *>          N is INTEGER
        !            80: *>          The order of the matrix T. N >= 0.
        !            81: *> \endverbatim
        !            82: *>
        !            83: *> \param[in] T
        !            84: *> \verbatim
        !            85: *>          T is COMPLEX*16 array, dimension (LDT,N)
        !            86: *>          The upper triangular matrix T.
        !            87: *> \endverbatim
        !            88: *>
        !            89: *> \param[in] LDT
        !            90: *> \verbatim
        !            91: *>          LDT is INTEGER
        !            92: *>          The leading dimension of the array T. LDT >= max(1,N).
        !            93: *> \endverbatim
        !            94: *>
        !            95: *> \param[in] VL
        !            96: *> \verbatim
        !            97: *>          VL is COMPLEX*16 array, dimension (LDVL,M)
        !            98: *>          If JOB = 'E' or 'B', VL must contain left eigenvectors of T
        !            99: *>          (or of any Q*T*Q**H with Q unitary), corresponding to the
        !           100: *>          eigenpairs specified by HOWMNY and SELECT. The eigenvectors
        !           101: *>          must be stored in consecutive columns of VL, as returned by
        !           102: *>          ZHSEIN or ZTREVC.
        !           103: *>          If JOB = 'V', VL is not referenced.
        !           104: *> \endverbatim
        !           105: *>
        !           106: *> \param[in] LDVL
        !           107: *> \verbatim
        !           108: *>          LDVL is INTEGER
        !           109: *>          The leading dimension of the array VL.
        !           110: *>          LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N.
        !           111: *> \endverbatim
        !           112: *>
        !           113: *> \param[in] VR
        !           114: *> \verbatim
        !           115: *>          VR is COMPLEX*16 array, dimension (LDVR,M)
        !           116: *>          If JOB = 'E' or 'B', VR must contain right eigenvectors of T
        !           117: *>          (or of any Q*T*Q**H with Q unitary), corresponding to the
        !           118: *>          eigenpairs specified by HOWMNY and SELECT. The eigenvectors
        !           119: *>          must be stored in consecutive columns of VR, as returned by
        !           120: *>          ZHSEIN or ZTREVC.
        !           121: *>          If JOB = 'V', VR is not referenced.
        !           122: *> \endverbatim
        !           123: *>
        !           124: *> \param[in] LDVR
        !           125: *> \verbatim
        !           126: *>          LDVR is INTEGER
        !           127: *>          The leading dimension of the array VR.
        !           128: *>          LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N.
        !           129: *> \endverbatim
        !           130: *>
        !           131: *> \param[out] S
        !           132: *> \verbatim
        !           133: *>          S is DOUBLE PRECISION array, dimension (MM)
        !           134: *>          If JOB = 'E' or 'B', the reciprocal condition numbers of the
        !           135: *>          selected eigenvalues, stored in consecutive elements of the
        !           136: *>          array. Thus S(j), SEP(j), and the j-th columns of VL and VR
        !           137: *>          all correspond to the same eigenpair (but not in general the
        !           138: *>          j-th eigenpair, unless all eigenpairs are selected).
        !           139: *>          If JOB = 'V', S is not referenced.
        !           140: *> \endverbatim
        !           141: *>
        !           142: *> \param[out] SEP
        !           143: *> \verbatim
        !           144: *>          SEP is DOUBLE PRECISION array, dimension (MM)
        !           145: *>          If JOB = 'V' or 'B', the estimated reciprocal condition
        !           146: *>          numbers of the selected eigenvectors, stored in consecutive
        !           147: *>          elements of the array.
        !           148: *>          If JOB = 'E', SEP is not referenced.
        !           149: *> \endverbatim
        !           150: *>
        !           151: *> \param[in] MM
        !           152: *> \verbatim
        !           153: *>          MM is INTEGER
        !           154: *>          The number of elements in the arrays S (if JOB = 'E' or 'B')
        !           155: *>           and/or SEP (if JOB = 'V' or 'B'). MM >= M.
        !           156: *> \endverbatim
        !           157: *>
        !           158: *> \param[out] M
        !           159: *> \verbatim
        !           160: *>          M is INTEGER
        !           161: *>          The number of elements of the arrays S and/or SEP actually
        !           162: *>          used to store the estimated condition numbers.
        !           163: *>          If HOWMNY = 'A', M is set to N.
        !           164: *> \endverbatim
        !           165: *>
        !           166: *> \param[out] WORK
        !           167: *> \verbatim
        !           168: *>          WORK is COMPLEX*16 array, dimension (LDWORK,N+6)
        !           169: *>          If JOB = 'E', WORK is not referenced.
        !           170: *> \endverbatim
        !           171: *>
        !           172: *> \param[in] LDWORK
        !           173: *> \verbatim
        !           174: *>          LDWORK is INTEGER
        !           175: *>          The leading dimension of the array WORK.
        !           176: *>          LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N.
        !           177: *> \endverbatim
        !           178: *>
        !           179: *> \param[out] RWORK
        !           180: *> \verbatim
        !           181: *>          RWORK is DOUBLE PRECISION array, dimension (N)
        !           182: *>          If JOB = 'E', RWORK is not referenced.
        !           183: *> \endverbatim
        !           184: *>
        !           185: *> \param[out] INFO
        !           186: *> \verbatim
        !           187: *>          INFO is INTEGER
        !           188: *>          = 0: successful exit
        !           189: *>          < 0: if INFO = -i, the i-th argument had an illegal value
        !           190: *> \endverbatim
        !           191: *
        !           192: *  Authors:
        !           193: *  ========
        !           194: *
        !           195: *> \author Univ. of Tennessee 
        !           196: *> \author Univ. of California Berkeley 
        !           197: *> \author Univ. of Colorado Denver 
        !           198: *> \author NAG Ltd. 
        !           199: *
        !           200: *> \date November 2011
        !           201: *
        !           202: *> \ingroup complex16OTHERcomputational
        !           203: *
        !           204: *> \par Further Details:
        !           205: *  =====================
        !           206: *>
        !           207: *> \verbatim
        !           208: *>
        !           209: *>  The reciprocal of the condition number of an eigenvalue lambda is
        !           210: *>  defined as
        !           211: *>
        !           212: *>          S(lambda) = |v**H*u| / (norm(u)*norm(v))
        !           213: *>
        !           214: *>  where u and v are the right and left eigenvectors of T corresponding
        !           215: *>  to lambda; v**H denotes the conjugate transpose of v, and norm(u)
        !           216: *>  denotes the Euclidean norm. These reciprocal condition numbers always
        !           217: *>  lie between zero (very badly conditioned) and one (very well
        !           218: *>  conditioned). If n = 1, S(lambda) is defined to be 1.
        !           219: *>
        !           220: *>  An approximate error bound for a computed eigenvalue W(i) is given by
        !           221: *>
        !           222: *>                      EPS * norm(T) / S(i)
        !           223: *>
        !           224: *>  where EPS is the machine precision.
        !           225: *>
        !           226: *>  The reciprocal of the condition number of the right eigenvector u
        !           227: *>  corresponding to lambda is defined as follows. Suppose
        !           228: *>
        !           229: *>              T = ( lambda  c  )
        !           230: *>                  (   0    T22 )
        !           231: *>
        !           232: *>  Then the reciprocal condition number is
        !           233: *>
        !           234: *>          SEP( lambda, T22 ) = sigma-min( T22 - lambda*I )
        !           235: *>
        !           236: *>  where sigma-min denotes the smallest singular value. We approximate
        !           237: *>  the smallest singular value by the reciprocal of an estimate of the
        !           238: *>  one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is
        !           239: *>  defined to be abs(T(1,1)).
        !           240: *>
        !           241: *>  An approximate error bound for a computed right eigenvector VR(i)
        !           242: *>  is given by
        !           243: *>
        !           244: *>                      EPS * norm(T) / SEP(i)
        !           245: *> \endverbatim
        !           246: *>
        !           247: *  =====================================================================
1.1       bertrand  248:       SUBROUTINE ZTRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
                    249:      $                   LDVR, S, SEP, MM, M, WORK, LDWORK, RWORK,
                    250:      $                   INFO )
                    251: *
1.9     ! bertrand  252: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  253: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    254: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  255: *     November 2011
1.1       bertrand  256: *
                    257: *     .. Scalar Arguments ..
                    258:       CHARACTER          HOWMNY, JOB
                    259:       INTEGER            INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N
                    260: *     ..
                    261: *     .. Array Arguments ..
                    262:       LOGICAL            SELECT( * )
                    263:       DOUBLE PRECISION   RWORK( * ), S( * ), SEP( * )
                    264:       COMPLEX*16         T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
                    265:      $                   WORK( LDWORK, * )
                    266: *     ..
                    267: *
                    268: *  =====================================================================
                    269: *
                    270: *     .. Parameters ..
                    271:       DOUBLE PRECISION   ZERO, ONE
                    272:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D0+0 )
                    273: *     ..
                    274: *     .. Local Scalars ..
                    275:       LOGICAL            SOMCON, WANTBH, WANTS, WANTSP
                    276:       CHARACTER          NORMIN
                    277:       INTEGER            I, IERR, IX, J, K, KASE, KS
                    278:       DOUBLE PRECISION   BIGNUM, EPS, EST, LNRM, RNRM, SCALE, SMLNUM,
                    279:      $                   XNORM
                    280:       COMPLEX*16         CDUM, PROD
                    281: *     ..
                    282: *     .. Local Arrays ..
                    283:       INTEGER            ISAVE( 3 )
                    284:       COMPLEX*16         DUMMY( 1 )
                    285: *     ..
                    286: *     .. External Functions ..
                    287:       LOGICAL            LSAME
                    288:       INTEGER            IZAMAX
                    289:       DOUBLE PRECISION   DLAMCH, DZNRM2
                    290:       COMPLEX*16         ZDOTC
                    291:       EXTERNAL           LSAME, IZAMAX, DLAMCH, DZNRM2, ZDOTC
                    292: *     ..
                    293: *     .. External Subroutines ..
                    294:       EXTERNAL           XERBLA, ZDRSCL, ZLACN2, ZLACPY, ZLATRS, ZTREXC
                    295: *     ..
                    296: *     .. Intrinsic Functions ..
                    297:       INTRINSIC          ABS, DBLE, DIMAG, MAX
                    298: *     ..
                    299: *     .. Statement Functions ..
                    300:       DOUBLE PRECISION   CABS1
                    301: *     ..
                    302: *     .. Statement Function definitions ..
                    303:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
                    304: *     ..
                    305: *     .. Executable Statements ..
                    306: *
                    307: *     Decode and test the input parameters
                    308: *
                    309:       WANTBH = LSAME( JOB, 'B' )
                    310:       WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
                    311:       WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH
                    312: *
                    313:       SOMCON = LSAME( HOWMNY, 'S' )
                    314: *
                    315: *     Set M to the number of eigenpairs for which condition numbers are
                    316: *     to be computed.
                    317: *
                    318:       IF( SOMCON ) THEN
                    319:          M = 0
                    320:          DO 10 J = 1, N
                    321:             IF( SELECT( J ) )
                    322:      $         M = M + 1
                    323:    10    CONTINUE
                    324:       ELSE
                    325:          M = N
                    326:       END IF
                    327: *
                    328:       INFO = 0
                    329:       IF( .NOT.WANTS .AND. .NOT.WANTSP ) THEN
                    330:          INFO = -1
                    331:       ELSE IF( .NOT.LSAME( HOWMNY, 'A' ) .AND. .NOT.SOMCON ) THEN
                    332:          INFO = -2
                    333:       ELSE IF( N.LT.0 ) THEN
                    334:          INFO = -4
                    335:       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
                    336:          INFO = -6
                    337:       ELSE IF( LDVL.LT.1 .OR. ( WANTS .AND. LDVL.LT.N ) ) THEN
                    338:          INFO = -8
                    339:       ELSE IF( LDVR.LT.1 .OR. ( WANTS .AND. LDVR.LT.N ) ) THEN
                    340:          INFO = -10
                    341:       ELSE IF( MM.LT.M ) THEN
                    342:          INFO = -13
                    343:       ELSE IF( LDWORK.LT.1 .OR. ( WANTSP .AND. LDWORK.LT.N ) ) THEN
                    344:          INFO = -16
                    345:       END IF
                    346:       IF( INFO.NE.0 ) THEN
                    347:          CALL XERBLA( 'ZTRSNA', -INFO )
                    348:          RETURN
                    349:       END IF
                    350: *
                    351: *     Quick return if possible
                    352: *
                    353:       IF( N.EQ.0 )
                    354:      $   RETURN
                    355: *
                    356:       IF( N.EQ.1 ) THEN
                    357:          IF( SOMCON ) THEN
                    358:             IF( .NOT.SELECT( 1 ) )
                    359:      $         RETURN
                    360:          END IF
                    361:          IF( WANTS )
                    362:      $      S( 1 ) = ONE
                    363:          IF( WANTSP )
                    364:      $      SEP( 1 ) = ABS( T( 1, 1 ) )
                    365:          RETURN
                    366:       END IF
                    367: *
                    368: *     Get machine constants
                    369: *
                    370:       EPS = DLAMCH( 'P' )
                    371:       SMLNUM = DLAMCH( 'S' ) / EPS
                    372:       BIGNUM = ONE / SMLNUM
                    373:       CALL DLABAD( SMLNUM, BIGNUM )
                    374: *
                    375:       KS = 1
                    376:       DO 50 K = 1, N
                    377: *
                    378:          IF( SOMCON ) THEN
                    379:             IF( .NOT.SELECT( K ) )
                    380:      $         GO TO 50
                    381:          END IF
                    382: *
                    383:          IF( WANTS ) THEN
                    384: *
                    385: *           Compute the reciprocal condition number of the k-th
                    386: *           eigenvalue.
                    387: *
                    388:             PROD = ZDOTC( N, VR( 1, KS ), 1, VL( 1, KS ), 1 )
                    389:             RNRM = DZNRM2( N, VR( 1, KS ), 1 )
                    390:             LNRM = DZNRM2( N, VL( 1, KS ), 1 )
                    391:             S( KS ) = ABS( PROD ) / ( RNRM*LNRM )
                    392: *
                    393:          END IF
                    394: *
                    395:          IF( WANTSP ) THEN
                    396: *
                    397: *           Estimate the reciprocal condition number of the k-th
                    398: *           eigenvector.
                    399: *
                    400: *           Copy the matrix T to the array WORK and swap the k-th
                    401: *           diagonal element to the (1,1) position.
                    402: *
                    403:             CALL ZLACPY( 'Full', N, N, T, LDT, WORK, LDWORK )
                    404:             CALL ZTREXC( 'No Q', N, WORK, LDWORK, DUMMY, 1, K, 1, IERR )
                    405: *
                    406: *           Form  C = T22 - lambda*I in WORK(2:N,2:N).
                    407: *
                    408:             DO 20 I = 2, N
                    409:                WORK( I, I ) = WORK( I, I ) - WORK( 1, 1 )
                    410:    20       CONTINUE
                    411: *
1.8       bertrand  412: *           Estimate a lower bound for the 1-norm of inv(C**H). The 1st
1.1       bertrand  413: *           and (N+1)th columns of WORK are used to store work vectors.
                    414: *
                    415:             SEP( KS ) = ZERO
                    416:             EST = ZERO
                    417:             KASE = 0
                    418:             NORMIN = 'N'
                    419:    30       CONTINUE
                    420:             CALL ZLACN2( N-1, WORK( 1, N+1 ), WORK, EST, KASE, ISAVE )
                    421: *
                    422:             IF( KASE.NE.0 ) THEN
                    423:                IF( KASE.EQ.1 ) THEN
                    424: *
1.8       bertrand  425: *                 Solve C**H*x = scale*b
1.1       bertrand  426: *
                    427:                   CALL ZLATRS( 'Upper', 'Conjugate transpose',
                    428:      $                         'Nonunit', NORMIN, N-1, WORK( 2, 2 ),
                    429:      $                         LDWORK, WORK, SCALE, RWORK, IERR )
                    430:                ELSE
                    431: *
                    432: *                 Solve C*x = scale*b
                    433: *
                    434:                   CALL ZLATRS( 'Upper', 'No transpose', 'Nonunit',
                    435:      $                         NORMIN, N-1, WORK( 2, 2 ), LDWORK, WORK,
                    436:      $                         SCALE, RWORK, IERR )
                    437:                END IF
                    438:                NORMIN = 'Y'
                    439:                IF( SCALE.NE.ONE ) THEN
                    440: *
                    441: *                 Multiply by 1/SCALE if doing so will not cause
                    442: *                 overflow.
                    443: *
                    444:                   IX = IZAMAX( N-1, WORK, 1 )
                    445:                   XNORM = CABS1( WORK( IX, 1 ) )
                    446:                   IF( SCALE.LT.XNORM*SMLNUM .OR. SCALE.EQ.ZERO )
                    447:      $               GO TO 40
                    448:                   CALL ZDRSCL( N, SCALE, WORK, 1 )
                    449:                END IF
                    450:                GO TO 30
                    451:             END IF
                    452: *
                    453:             SEP( KS ) = ONE / MAX( EST, SMLNUM )
                    454:          END IF
                    455: *
                    456:    40    CONTINUE
                    457:          KS = KS + 1
                    458:    50 CONTINUE
                    459:       RETURN
                    460: *
                    461: *     End of ZTRSNA
                    462: *
                    463:       END

CVSweb interface <joel.bertrand@systella.fr>