Annotation of rpl/lapack/lapack/ztrsna.f, revision 1.5

1.1       bertrand    1:       SUBROUTINE ZTRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
                      2:      $                   LDVR, S, SEP, MM, M, WORK, LDWORK, RWORK,
                      3:      $                   INFO )
                      4: *
                      5: *  -- LAPACK routine (version 3.2) --
                      6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      8: *     November 2006
                      9: *
                     10: *     Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH.
                     11: *
                     12: *     .. Scalar Arguments ..
                     13:       CHARACTER          HOWMNY, JOB
                     14:       INTEGER            INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N
                     15: *     ..
                     16: *     .. Array Arguments ..
                     17:       LOGICAL            SELECT( * )
                     18:       DOUBLE PRECISION   RWORK( * ), S( * ), SEP( * )
                     19:       COMPLEX*16         T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
                     20:      $                   WORK( LDWORK, * )
                     21: *     ..
                     22: *
                     23: *  Purpose
                     24: *  =======
                     25: *
                     26: *  ZTRSNA estimates reciprocal condition numbers for specified
                     27: *  eigenvalues and/or right eigenvectors of a complex upper triangular
                     28: *  matrix T (or of any matrix Q*T*Q**H with Q unitary).
                     29: *
                     30: *  Arguments
                     31: *  =========
                     32: *
                     33: *  JOB     (input) CHARACTER*1
                     34: *          Specifies whether condition numbers are required for
                     35: *          eigenvalues (S) or eigenvectors (SEP):
                     36: *          = 'E': for eigenvalues only (S);
                     37: *          = 'V': for eigenvectors only (SEP);
                     38: *          = 'B': for both eigenvalues and eigenvectors (S and SEP).
                     39: *
                     40: *  HOWMNY  (input) CHARACTER*1
                     41: *          = 'A': compute condition numbers for all eigenpairs;
                     42: *          = 'S': compute condition numbers for selected eigenpairs
                     43: *                 specified by the array SELECT.
                     44: *
                     45: *  SELECT  (input) LOGICAL array, dimension (N)
                     46: *          If HOWMNY = 'S', SELECT specifies the eigenpairs for which
                     47: *          condition numbers are required. To select condition numbers
                     48: *          for the j-th eigenpair, SELECT(j) must be set to .TRUE..
                     49: *          If HOWMNY = 'A', SELECT is not referenced.
                     50: *
                     51: *  N       (input) INTEGER
                     52: *          The order of the matrix T. N >= 0.
                     53: *
                     54: *  T       (input) COMPLEX*16 array, dimension (LDT,N)
                     55: *          The upper triangular matrix T.
                     56: *
                     57: *  LDT     (input) INTEGER
                     58: *          The leading dimension of the array T. LDT >= max(1,N).
                     59: *
                     60: *  VL      (input) COMPLEX*16 array, dimension (LDVL,M)
                     61: *          If JOB = 'E' or 'B', VL must contain left eigenvectors of T
                     62: *          (or of any Q*T*Q**H with Q unitary), corresponding to the
                     63: *          eigenpairs specified by HOWMNY and SELECT. The eigenvectors
                     64: *          must be stored in consecutive columns of VL, as returned by
                     65: *          ZHSEIN or ZTREVC.
                     66: *          If JOB = 'V', VL is not referenced.
                     67: *
                     68: *  LDVL    (input) INTEGER
                     69: *          The leading dimension of the array VL.
                     70: *          LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N.
                     71: *
                     72: *  VR      (input) COMPLEX*16 array, dimension (LDVR,M)
                     73: *          If JOB = 'E' or 'B', VR must contain right eigenvectors of T
                     74: *          (or of any Q*T*Q**H with Q unitary), corresponding to the
                     75: *          eigenpairs specified by HOWMNY and SELECT. The eigenvectors
                     76: *          must be stored in consecutive columns of VR, as returned by
                     77: *          ZHSEIN or ZTREVC.
                     78: *          If JOB = 'V', VR is not referenced.
                     79: *
                     80: *  LDVR    (input) INTEGER
                     81: *          The leading dimension of the array VR.
                     82: *          LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N.
                     83: *
                     84: *  S       (output) DOUBLE PRECISION array, dimension (MM)
                     85: *          If JOB = 'E' or 'B', the reciprocal condition numbers of the
                     86: *          selected eigenvalues, stored in consecutive elements of the
                     87: *          array. Thus S(j), SEP(j), and the j-th columns of VL and VR
                     88: *          all correspond to the same eigenpair (but not in general the
                     89: *          j-th eigenpair, unless all eigenpairs are selected).
                     90: *          If JOB = 'V', S is not referenced.
                     91: *
                     92: *  SEP     (output) DOUBLE PRECISION array, dimension (MM)
                     93: *          If JOB = 'V' or 'B', the estimated reciprocal condition
                     94: *          numbers of the selected eigenvectors, stored in consecutive
                     95: *          elements of the array.
                     96: *          If JOB = 'E', SEP is not referenced.
                     97: *
                     98: *  MM      (input) INTEGER
                     99: *          The number of elements in the arrays S (if JOB = 'E' or 'B')
                    100: *           and/or SEP (if JOB = 'V' or 'B'). MM >= M.
                    101: *
                    102: *  M       (output) INTEGER
                    103: *          The number of elements of the arrays S and/or SEP actually
                    104: *          used to store the estimated condition numbers.
                    105: *          If HOWMNY = 'A', M is set to N.
                    106: *
                    107: *  WORK    (workspace) COMPLEX*16 array, dimension (LDWORK,N+6)
                    108: *          If JOB = 'E', WORK is not referenced.
                    109: *
                    110: *  LDWORK  (input) INTEGER
                    111: *          The leading dimension of the array WORK.
                    112: *          LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N.
                    113: *
                    114: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
                    115: *          If JOB = 'E', RWORK is not referenced.
                    116: *
                    117: *  INFO    (output) INTEGER
                    118: *          = 0: successful exit
                    119: *          < 0: if INFO = -i, the i-th argument had an illegal value
                    120: *
                    121: *  Further Details
                    122: *  ===============
                    123: *
                    124: *  The reciprocal of the condition number of an eigenvalue lambda is
                    125: *  defined as
                    126: *
                    127: *          S(lambda) = |v'*u| / (norm(u)*norm(v))
                    128: *
                    129: *  where u and v are the right and left eigenvectors of T corresponding
                    130: *  to lambda; v' denotes the conjugate transpose of v, and norm(u)
                    131: *  denotes the Euclidean norm. These reciprocal condition numbers always
                    132: *  lie between zero (very badly conditioned) and one (very well
                    133: *  conditioned). If n = 1, S(lambda) is defined to be 1.
                    134: *
                    135: *  An approximate error bound for a computed eigenvalue W(i) is given by
                    136: *
                    137: *                      EPS * norm(T) / S(i)
                    138: *
                    139: *  where EPS is the machine precision.
                    140: *
                    141: *  The reciprocal of the condition number of the right eigenvector u
                    142: *  corresponding to lambda is defined as follows. Suppose
                    143: *
                    144: *              T = ( lambda  c  )
                    145: *                  (   0    T22 )
                    146: *
                    147: *  Then the reciprocal condition number is
                    148: *
                    149: *          SEP( lambda, T22 ) = sigma-min( T22 - lambda*I )
                    150: *
                    151: *  where sigma-min denotes the smallest singular value. We approximate
                    152: *  the smallest singular value by the reciprocal of an estimate of the
                    153: *  one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is
                    154: *  defined to be abs(T(1,1)).
                    155: *
                    156: *  An approximate error bound for a computed right eigenvector VR(i)
                    157: *  is given by
                    158: *
                    159: *                      EPS * norm(T) / SEP(i)
                    160: *
                    161: *  =====================================================================
                    162: *
                    163: *     .. Parameters ..
                    164:       DOUBLE PRECISION   ZERO, ONE
                    165:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D0+0 )
                    166: *     ..
                    167: *     .. Local Scalars ..
                    168:       LOGICAL            SOMCON, WANTBH, WANTS, WANTSP
                    169:       CHARACTER          NORMIN
                    170:       INTEGER            I, IERR, IX, J, K, KASE, KS
                    171:       DOUBLE PRECISION   BIGNUM, EPS, EST, LNRM, RNRM, SCALE, SMLNUM,
                    172:      $                   XNORM
                    173:       COMPLEX*16         CDUM, PROD
                    174: *     ..
                    175: *     .. Local Arrays ..
                    176:       INTEGER            ISAVE( 3 )
                    177:       COMPLEX*16         DUMMY( 1 )
                    178: *     ..
                    179: *     .. External Functions ..
                    180:       LOGICAL            LSAME
                    181:       INTEGER            IZAMAX
                    182:       DOUBLE PRECISION   DLAMCH, DZNRM2
                    183:       COMPLEX*16         ZDOTC
                    184:       EXTERNAL           LSAME, IZAMAX, DLAMCH, DZNRM2, ZDOTC
                    185: *     ..
                    186: *     .. External Subroutines ..
                    187:       EXTERNAL           XERBLA, ZDRSCL, ZLACN2, ZLACPY, ZLATRS, ZTREXC
                    188: *     ..
                    189: *     .. Intrinsic Functions ..
                    190:       INTRINSIC          ABS, DBLE, DIMAG, MAX
                    191: *     ..
                    192: *     .. Statement Functions ..
                    193:       DOUBLE PRECISION   CABS1
                    194: *     ..
                    195: *     .. Statement Function definitions ..
                    196:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
                    197: *     ..
                    198: *     .. Executable Statements ..
                    199: *
                    200: *     Decode and test the input parameters
                    201: *
                    202:       WANTBH = LSAME( JOB, 'B' )
                    203:       WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
                    204:       WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH
                    205: *
                    206:       SOMCON = LSAME( HOWMNY, 'S' )
                    207: *
                    208: *     Set M to the number of eigenpairs for which condition numbers are
                    209: *     to be computed.
                    210: *
                    211:       IF( SOMCON ) THEN
                    212:          M = 0
                    213:          DO 10 J = 1, N
                    214:             IF( SELECT( J ) )
                    215:      $         M = M + 1
                    216:    10    CONTINUE
                    217:       ELSE
                    218:          M = N
                    219:       END IF
                    220: *
                    221:       INFO = 0
                    222:       IF( .NOT.WANTS .AND. .NOT.WANTSP ) THEN
                    223:          INFO = -1
                    224:       ELSE IF( .NOT.LSAME( HOWMNY, 'A' ) .AND. .NOT.SOMCON ) THEN
                    225:          INFO = -2
                    226:       ELSE IF( N.LT.0 ) THEN
                    227:          INFO = -4
                    228:       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
                    229:          INFO = -6
                    230:       ELSE IF( LDVL.LT.1 .OR. ( WANTS .AND. LDVL.LT.N ) ) THEN
                    231:          INFO = -8
                    232:       ELSE IF( LDVR.LT.1 .OR. ( WANTS .AND. LDVR.LT.N ) ) THEN
                    233:          INFO = -10
                    234:       ELSE IF( MM.LT.M ) THEN
                    235:          INFO = -13
                    236:       ELSE IF( LDWORK.LT.1 .OR. ( WANTSP .AND. LDWORK.LT.N ) ) THEN
                    237:          INFO = -16
                    238:       END IF
                    239:       IF( INFO.NE.0 ) THEN
                    240:          CALL XERBLA( 'ZTRSNA', -INFO )
                    241:          RETURN
                    242:       END IF
                    243: *
                    244: *     Quick return if possible
                    245: *
                    246:       IF( N.EQ.0 )
                    247:      $   RETURN
                    248: *
                    249:       IF( N.EQ.1 ) THEN
                    250:          IF( SOMCON ) THEN
                    251:             IF( .NOT.SELECT( 1 ) )
                    252:      $         RETURN
                    253:          END IF
                    254:          IF( WANTS )
                    255:      $      S( 1 ) = ONE
                    256:          IF( WANTSP )
                    257:      $      SEP( 1 ) = ABS( T( 1, 1 ) )
                    258:          RETURN
                    259:       END IF
                    260: *
                    261: *     Get machine constants
                    262: *
                    263:       EPS = DLAMCH( 'P' )
                    264:       SMLNUM = DLAMCH( 'S' ) / EPS
                    265:       BIGNUM = ONE / SMLNUM
                    266:       CALL DLABAD( SMLNUM, BIGNUM )
                    267: *
                    268:       KS = 1
                    269:       DO 50 K = 1, N
                    270: *
                    271:          IF( SOMCON ) THEN
                    272:             IF( .NOT.SELECT( K ) )
                    273:      $         GO TO 50
                    274:          END IF
                    275: *
                    276:          IF( WANTS ) THEN
                    277: *
                    278: *           Compute the reciprocal condition number of the k-th
                    279: *           eigenvalue.
                    280: *
                    281:             PROD = ZDOTC( N, VR( 1, KS ), 1, VL( 1, KS ), 1 )
                    282:             RNRM = DZNRM2( N, VR( 1, KS ), 1 )
                    283:             LNRM = DZNRM2( N, VL( 1, KS ), 1 )
                    284:             S( KS ) = ABS( PROD ) / ( RNRM*LNRM )
                    285: *
                    286:          END IF
                    287: *
                    288:          IF( WANTSP ) THEN
                    289: *
                    290: *           Estimate the reciprocal condition number of the k-th
                    291: *           eigenvector.
                    292: *
                    293: *           Copy the matrix T to the array WORK and swap the k-th
                    294: *           diagonal element to the (1,1) position.
                    295: *
                    296:             CALL ZLACPY( 'Full', N, N, T, LDT, WORK, LDWORK )
                    297:             CALL ZTREXC( 'No Q', N, WORK, LDWORK, DUMMY, 1, K, 1, IERR )
                    298: *
                    299: *           Form  C = T22 - lambda*I in WORK(2:N,2:N).
                    300: *
                    301:             DO 20 I = 2, N
                    302:                WORK( I, I ) = WORK( I, I ) - WORK( 1, 1 )
                    303:    20       CONTINUE
                    304: *
                    305: *           Estimate a lower bound for the 1-norm of inv(C'). The 1st
                    306: *           and (N+1)th columns of WORK are used to store work vectors.
                    307: *
                    308:             SEP( KS ) = ZERO
                    309:             EST = ZERO
                    310:             KASE = 0
                    311:             NORMIN = 'N'
                    312:    30       CONTINUE
                    313:             CALL ZLACN2( N-1, WORK( 1, N+1 ), WORK, EST, KASE, ISAVE )
                    314: *
                    315:             IF( KASE.NE.0 ) THEN
                    316:                IF( KASE.EQ.1 ) THEN
                    317: *
                    318: *                 Solve C'*x = scale*b
                    319: *
                    320:                   CALL ZLATRS( 'Upper', 'Conjugate transpose',
                    321:      $                         'Nonunit', NORMIN, N-1, WORK( 2, 2 ),
                    322:      $                         LDWORK, WORK, SCALE, RWORK, IERR )
                    323:                ELSE
                    324: *
                    325: *                 Solve C*x = scale*b
                    326: *
                    327:                   CALL ZLATRS( 'Upper', 'No transpose', 'Nonunit',
                    328:      $                         NORMIN, N-1, WORK( 2, 2 ), LDWORK, WORK,
                    329:      $                         SCALE, RWORK, IERR )
                    330:                END IF
                    331:                NORMIN = 'Y'
                    332:                IF( SCALE.NE.ONE ) THEN
                    333: *
                    334: *                 Multiply by 1/SCALE if doing so will not cause
                    335: *                 overflow.
                    336: *
                    337:                   IX = IZAMAX( N-1, WORK, 1 )
                    338:                   XNORM = CABS1( WORK( IX, 1 ) )
                    339:                   IF( SCALE.LT.XNORM*SMLNUM .OR. SCALE.EQ.ZERO )
                    340:      $               GO TO 40
                    341:                   CALL ZDRSCL( N, SCALE, WORK, 1 )
                    342:                END IF
                    343:                GO TO 30
                    344:             END IF
                    345: *
                    346:             SEP( KS ) = ONE / MAX( EST, SMLNUM )
                    347:          END IF
                    348: *
                    349:    40    CONTINUE
                    350:          KS = KS + 1
                    351:    50 CONTINUE
                    352:       RETURN
                    353: *
                    354: *     End of ZTRSNA
                    355: *
                    356:       END

CVSweb interface <joel.bertrand@systella.fr>