Annotation of rpl/lapack/lapack/ztrsna.f, revision 1.17

1.9       bertrand    1: *> \brief \b ZTRSNA
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download ZTRSNA + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztrsna.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztrsna.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztrsna.f">
1.9       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZTRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
                     22: *                          LDVR, S, SEP, MM, M, WORK, LDWORK, RWORK,
                     23: *                          INFO )
1.15      bertrand   24: *
1.9       bertrand   25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          HOWMNY, JOB
                     27: *       INTEGER            INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N
                     28: *       ..
                     29: *       .. Array Arguments ..
                     30: *       LOGICAL            SELECT( * )
                     31: *       DOUBLE PRECISION   RWORK( * ), S( * ), SEP( * )
                     32: *       COMPLEX*16         T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
                     33: *      $                   WORK( LDWORK, * )
                     34: *       ..
1.15      bertrand   35: *
1.9       bertrand   36: *
                     37: *> \par Purpose:
                     38: *  =============
                     39: *>
                     40: *> \verbatim
                     41: *>
                     42: *> ZTRSNA estimates reciprocal condition numbers for specified
                     43: *> eigenvalues and/or right eigenvectors of a complex upper triangular
                     44: *> matrix T (or of any matrix Q*T*Q**H with Q unitary).
                     45: *> \endverbatim
                     46: *
                     47: *  Arguments:
                     48: *  ==========
                     49: *
                     50: *> \param[in] JOB
                     51: *> \verbatim
                     52: *>          JOB is CHARACTER*1
                     53: *>          Specifies whether condition numbers are required for
                     54: *>          eigenvalues (S) or eigenvectors (SEP):
                     55: *>          = 'E': for eigenvalues only (S);
                     56: *>          = 'V': for eigenvectors only (SEP);
                     57: *>          = 'B': for both eigenvalues and eigenvectors (S and SEP).
                     58: *> \endverbatim
                     59: *>
                     60: *> \param[in] HOWMNY
                     61: *> \verbatim
                     62: *>          HOWMNY is CHARACTER*1
                     63: *>          = 'A': compute condition numbers for all eigenpairs;
                     64: *>          = 'S': compute condition numbers for selected eigenpairs
                     65: *>                 specified by the array SELECT.
                     66: *> \endverbatim
                     67: *>
                     68: *> \param[in] SELECT
                     69: *> \verbatim
                     70: *>          SELECT is LOGICAL array, dimension (N)
                     71: *>          If HOWMNY = 'S', SELECT specifies the eigenpairs for which
                     72: *>          condition numbers are required. To select condition numbers
                     73: *>          for the j-th eigenpair, SELECT(j) must be set to .TRUE..
                     74: *>          If HOWMNY = 'A', SELECT is not referenced.
                     75: *> \endverbatim
                     76: *>
                     77: *> \param[in] N
                     78: *> \verbatim
                     79: *>          N is INTEGER
                     80: *>          The order of the matrix T. N >= 0.
                     81: *> \endverbatim
                     82: *>
                     83: *> \param[in] T
                     84: *> \verbatim
                     85: *>          T is COMPLEX*16 array, dimension (LDT,N)
                     86: *>          The upper triangular matrix T.
                     87: *> \endverbatim
                     88: *>
                     89: *> \param[in] LDT
                     90: *> \verbatim
                     91: *>          LDT is INTEGER
                     92: *>          The leading dimension of the array T. LDT >= max(1,N).
                     93: *> \endverbatim
                     94: *>
                     95: *> \param[in] VL
                     96: *> \verbatim
                     97: *>          VL is COMPLEX*16 array, dimension (LDVL,M)
                     98: *>          If JOB = 'E' or 'B', VL must contain left eigenvectors of T
                     99: *>          (or of any Q*T*Q**H with Q unitary), corresponding to the
                    100: *>          eigenpairs specified by HOWMNY and SELECT. The eigenvectors
                    101: *>          must be stored in consecutive columns of VL, as returned by
                    102: *>          ZHSEIN or ZTREVC.
                    103: *>          If JOB = 'V', VL is not referenced.
                    104: *> \endverbatim
                    105: *>
                    106: *> \param[in] LDVL
                    107: *> \verbatim
                    108: *>          LDVL is INTEGER
                    109: *>          The leading dimension of the array VL.
                    110: *>          LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N.
                    111: *> \endverbatim
                    112: *>
                    113: *> \param[in] VR
                    114: *> \verbatim
                    115: *>          VR is COMPLEX*16 array, dimension (LDVR,M)
                    116: *>          If JOB = 'E' or 'B', VR must contain right eigenvectors of T
                    117: *>          (or of any Q*T*Q**H with Q unitary), corresponding to the
                    118: *>          eigenpairs specified by HOWMNY and SELECT. The eigenvectors
                    119: *>          must be stored in consecutive columns of VR, as returned by
                    120: *>          ZHSEIN or ZTREVC.
                    121: *>          If JOB = 'V', VR is not referenced.
                    122: *> \endverbatim
                    123: *>
                    124: *> \param[in] LDVR
                    125: *> \verbatim
                    126: *>          LDVR is INTEGER
                    127: *>          The leading dimension of the array VR.
                    128: *>          LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N.
                    129: *> \endverbatim
                    130: *>
                    131: *> \param[out] S
                    132: *> \verbatim
                    133: *>          S is DOUBLE PRECISION array, dimension (MM)
                    134: *>          If JOB = 'E' or 'B', the reciprocal condition numbers of the
                    135: *>          selected eigenvalues, stored in consecutive elements of the
                    136: *>          array. Thus S(j), SEP(j), and the j-th columns of VL and VR
                    137: *>          all correspond to the same eigenpair (but not in general the
                    138: *>          j-th eigenpair, unless all eigenpairs are selected).
                    139: *>          If JOB = 'V', S is not referenced.
                    140: *> \endverbatim
                    141: *>
                    142: *> \param[out] SEP
                    143: *> \verbatim
                    144: *>          SEP is DOUBLE PRECISION array, dimension (MM)
                    145: *>          If JOB = 'V' or 'B', the estimated reciprocal condition
                    146: *>          numbers of the selected eigenvectors, stored in consecutive
                    147: *>          elements of the array.
                    148: *>          If JOB = 'E', SEP is not referenced.
                    149: *> \endverbatim
                    150: *>
                    151: *> \param[in] MM
                    152: *> \verbatim
                    153: *>          MM is INTEGER
                    154: *>          The number of elements in the arrays S (if JOB = 'E' or 'B')
                    155: *>           and/or SEP (if JOB = 'V' or 'B'). MM >= M.
                    156: *> \endverbatim
                    157: *>
                    158: *> \param[out] M
                    159: *> \verbatim
                    160: *>          M is INTEGER
                    161: *>          The number of elements of the arrays S and/or SEP actually
                    162: *>          used to store the estimated condition numbers.
                    163: *>          If HOWMNY = 'A', M is set to N.
                    164: *> \endverbatim
                    165: *>
                    166: *> \param[out] WORK
                    167: *> \verbatim
                    168: *>          WORK is COMPLEX*16 array, dimension (LDWORK,N+6)
                    169: *>          If JOB = 'E', WORK is not referenced.
                    170: *> \endverbatim
                    171: *>
                    172: *> \param[in] LDWORK
                    173: *> \verbatim
                    174: *>          LDWORK is INTEGER
                    175: *>          The leading dimension of the array WORK.
                    176: *>          LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N.
                    177: *> \endverbatim
                    178: *>
                    179: *> \param[out] RWORK
                    180: *> \verbatim
                    181: *>          RWORK is DOUBLE PRECISION array, dimension (N)
                    182: *>          If JOB = 'E', RWORK is not referenced.
                    183: *> \endverbatim
                    184: *>
                    185: *> \param[out] INFO
                    186: *> \verbatim
                    187: *>          INFO is INTEGER
                    188: *>          = 0: successful exit
                    189: *>          < 0: if INFO = -i, the i-th argument had an illegal value
                    190: *> \endverbatim
                    191: *
                    192: *  Authors:
                    193: *  ========
                    194: *
1.15      bertrand  195: *> \author Univ. of Tennessee
                    196: *> \author Univ. of California Berkeley
                    197: *> \author Univ. of Colorado Denver
                    198: *> \author NAG Ltd.
1.9       bertrand  199: *
1.17    ! bertrand  200: *> \date November 2017
1.9       bertrand  201: *
                    202: *> \ingroup complex16OTHERcomputational
                    203: *
                    204: *> \par Further Details:
                    205: *  =====================
                    206: *>
                    207: *> \verbatim
                    208: *>
                    209: *>  The reciprocal of the condition number of an eigenvalue lambda is
                    210: *>  defined as
                    211: *>
                    212: *>          S(lambda) = |v**H*u| / (norm(u)*norm(v))
                    213: *>
                    214: *>  where u and v are the right and left eigenvectors of T corresponding
                    215: *>  to lambda; v**H denotes the conjugate transpose of v, and norm(u)
                    216: *>  denotes the Euclidean norm. These reciprocal condition numbers always
                    217: *>  lie between zero (very badly conditioned) and one (very well
                    218: *>  conditioned). If n = 1, S(lambda) is defined to be 1.
                    219: *>
                    220: *>  An approximate error bound for a computed eigenvalue W(i) is given by
                    221: *>
                    222: *>                      EPS * norm(T) / S(i)
                    223: *>
                    224: *>  where EPS is the machine precision.
                    225: *>
                    226: *>  The reciprocal of the condition number of the right eigenvector u
                    227: *>  corresponding to lambda is defined as follows. Suppose
                    228: *>
                    229: *>              T = ( lambda  c  )
                    230: *>                  (   0    T22 )
                    231: *>
                    232: *>  Then the reciprocal condition number is
                    233: *>
                    234: *>          SEP( lambda, T22 ) = sigma-min( T22 - lambda*I )
                    235: *>
                    236: *>  where sigma-min denotes the smallest singular value. We approximate
                    237: *>  the smallest singular value by the reciprocal of an estimate of the
                    238: *>  one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is
                    239: *>  defined to be abs(T(1,1)).
                    240: *>
                    241: *>  An approximate error bound for a computed right eigenvector VR(i)
                    242: *>  is given by
                    243: *>
                    244: *>                      EPS * norm(T) / SEP(i)
                    245: *> \endverbatim
                    246: *>
                    247: *  =====================================================================
1.1       bertrand  248:       SUBROUTINE ZTRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
                    249:      $                   LDVR, S, SEP, MM, M, WORK, LDWORK, RWORK,
                    250:      $                   INFO )
                    251: *
1.17    ! bertrand  252: *  -- LAPACK computational routine (version 3.8.0) --
1.1       bertrand  253: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    254: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.17    ! bertrand  255: *     November 2017
1.1       bertrand  256: *
                    257: *     .. Scalar Arguments ..
                    258:       CHARACTER          HOWMNY, JOB
                    259:       INTEGER            INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N
                    260: *     ..
                    261: *     .. Array Arguments ..
                    262:       LOGICAL            SELECT( * )
                    263:       DOUBLE PRECISION   RWORK( * ), S( * ), SEP( * )
                    264:       COMPLEX*16         T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
                    265:      $                   WORK( LDWORK, * )
                    266: *     ..
                    267: *
                    268: *  =====================================================================
                    269: *
                    270: *     .. Parameters ..
                    271:       DOUBLE PRECISION   ZERO, ONE
                    272:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D0+0 )
                    273: *     ..
                    274: *     .. Local Scalars ..
                    275:       LOGICAL            SOMCON, WANTBH, WANTS, WANTSP
                    276:       CHARACTER          NORMIN
                    277:       INTEGER            I, IERR, IX, J, K, KASE, KS
                    278:       DOUBLE PRECISION   BIGNUM, EPS, EST, LNRM, RNRM, SCALE, SMLNUM,
                    279:      $                   XNORM
                    280:       COMPLEX*16         CDUM, PROD
                    281: *     ..
                    282: *     .. Local Arrays ..
                    283:       INTEGER            ISAVE( 3 )
                    284:       COMPLEX*16         DUMMY( 1 )
                    285: *     ..
                    286: *     .. External Functions ..
                    287:       LOGICAL            LSAME
                    288:       INTEGER            IZAMAX
                    289:       DOUBLE PRECISION   DLAMCH, DZNRM2
                    290:       COMPLEX*16         ZDOTC
                    291:       EXTERNAL           LSAME, IZAMAX, DLAMCH, DZNRM2, ZDOTC
                    292: *     ..
                    293: *     .. External Subroutines ..
1.17    ! bertrand  294:       EXTERNAL           XERBLA, ZDRSCL, ZLACN2, ZLACPY, ZLATRS, ZTREXC,
        !           295:      $                   DLABAD
1.1       bertrand  296: *     ..
                    297: *     .. Intrinsic Functions ..
                    298:       INTRINSIC          ABS, DBLE, DIMAG, MAX
                    299: *     ..
                    300: *     .. Statement Functions ..
                    301:       DOUBLE PRECISION   CABS1
                    302: *     ..
                    303: *     .. Statement Function definitions ..
                    304:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
                    305: *     ..
                    306: *     .. Executable Statements ..
                    307: *
                    308: *     Decode and test the input parameters
                    309: *
                    310:       WANTBH = LSAME( JOB, 'B' )
                    311:       WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
                    312:       WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH
                    313: *
                    314:       SOMCON = LSAME( HOWMNY, 'S' )
                    315: *
                    316: *     Set M to the number of eigenpairs for which condition numbers are
                    317: *     to be computed.
                    318: *
                    319:       IF( SOMCON ) THEN
                    320:          M = 0
                    321:          DO 10 J = 1, N
                    322:             IF( SELECT( J ) )
                    323:      $         M = M + 1
                    324:    10    CONTINUE
                    325:       ELSE
                    326:          M = N
                    327:       END IF
                    328: *
                    329:       INFO = 0
                    330:       IF( .NOT.WANTS .AND. .NOT.WANTSP ) THEN
                    331:          INFO = -1
                    332:       ELSE IF( .NOT.LSAME( HOWMNY, 'A' ) .AND. .NOT.SOMCON ) THEN
                    333:          INFO = -2
                    334:       ELSE IF( N.LT.0 ) THEN
                    335:          INFO = -4
                    336:       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
                    337:          INFO = -6
                    338:       ELSE IF( LDVL.LT.1 .OR. ( WANTS .AND. LDVL.LT.N ) ) THEN
                    339:          INFO = -8
                    340:       ELSE IF( LDVR.LT.1 .OR. ( WANTS .AND. LDVR.LT.N ) ) THEN
                    341:          INFO = -10
                    342:       ELSE IF( MM.LT.M ) THEN
                    343:          INFO = -13
                    344:       ELSE IF( LDWORK.LT.1 .OR. ( WANTSP .AND. LDWORK.LT.N ) ) THEN
                    345:          INFO = -16
                    346:       END IF
                    347:       IF( INFO.NE.0 ) THEN
                    348:          CALL XERBLA( 'ZTRSNA', -INFO )
                    349:          RETURN
                    350:       END IF
                    351: *
                    352: *     Quick return if possible
                    353: *
                    354:       IF( N.EQ.0 )
                    355:      $   RETURN
                    356: *
                    357:       IF( N.EQ.1 ) THEN
                    358:          IF( SOMCON ) THEN
                    359:             IF( .NOT.SELECT( 1 ) )
                    360:      $         RETURN
                    361:          END IF
                    362:          IF( WANTS )
                    363:      $      S( 1 ) = ONE
                    364:          IF( WANTSP )
                    365:      $      SEP( 1 ) = ABS( T( 1, 1 ) )
                    366:          RETURN
                    367:       END IF
                    368: *
                    369: *     Get machine constants
                    370: *
                    371:       EPS = DLAMCH( 'P' )
                    372:       SMLNUM = DLAMCH( 'S' ) / EPS
                    373:       BIGNUM = ONE / SMLNUM
                    374:       CALL DLABAD( SMLNUM, BIGNUM )
                    375: *
                    376:       KS = 1
                    377:       DO 50 K = 1, N
                    378: *
                    379:          IF( SOMCON ) THEN
                    380:             IF( .NOT.SELECT( K ) )
                    381:      $         GO TO 50
                    382:          END IF
                    383: *
                    384:          IF( WANTS ) THEN
                    385: *
                    386: *           Compute the reciprocal condition number of the k-th
                    387: *           eigenvalue.
                    388: *
                    389:             PROD = ZDOTC( N, VR( 1, KS ), 1, VL( 1, KS ), 1 )
                    390:             RNRM = DZNRM2( N, VR( 1, KS ), 1 )
                    391:             LNRM = DZNRM2( N, VL( 1, KS ), 1 )
                    392:             S( KS ) = ABS( PROD ) / ( RNRM*LNRM )
                    393: *
                    394:          END IF
                    395: *
                    396:          IF( WANTSP ) THEN
                    397: *
                    398: *           Estimate the reciprocal condition number of the k-th
                    399: *           eigenvector.
                    400: *
                    401: *           Copy the matrix T to the array WORK and swap the k-th
                    402: *           diagonal element to the (1,1) position.
                    403: *
                    404:             CALL ZLACPY( 'Full', N, N, T, LDT, WORK, LDWORK )
                    405:             CALL ZTREXC( 'No Q', N, WORK, LDWORK, DUMMY, 1, K, 1, IERR )
                    406: *
                    407: *           Form  C = T22 - lambda*I in WORK(2:N,2:N).
                    408: *
                    409:             DO 20 I = 2, N
                    410:                WORK( I, I ) = WORK( I, I ) - WORK( 1, 1 )
                    411:    20       CONTINUE
                    412: *
1.8       bertrand  413: *           Estimate a lower bound for the 1-norm of inv(C**H). The 1st
1.1       bertrand  414: *           and (N+1)th columns of WORK are used to store work vectors.
                    415: *
                    416:             SEP( KS ) = ZERO
                    417:             EST = ZERO
                    418:             KASE = 0
                    419:             NORMIN = 'N'
                    420:    30       CONTINUE
                    421:             CALL ZLACN2( N-1, WORK( 1, N+1 ), WORK, EST, KASE, ISAVE )
                    422: *
                    423:             IF( KASE.NE.0 ) THEN
                    424:                IF( KASE.EQ.1 ) THEN
                    425: *
1.8       bertrand  426: *                 Solve C**H*x = scale*b
1.1       bertrand  427: *
                    428:                   CALL ZLATRS( 'Upper', 'Conjugate transpose',
                    429:      $                         'Nonunit', NORMIN, N-1, WORK( 2, 2 ),
                    430:      $                         LDWORK, WORK, SCALE, RWORK, IERR )
                    431:                ELSE
                    432: *
                    433: *                 Solve C*x = scale*b
                    434: *
                    435:                   CALL ZLATRS( 'Upper', 'No transpose', 'Nonunit',
                    436:      $                         NORMIN, N-1, WORK( 2, 2 ), LDWORK, WORK,
                    437:      $                         SCALE, RWORK, IERR )
                    438:                END IF
                    439:                NORMIN = 'Y'
                    440:                IF( SCALE.NE.ONE ) THEN
                    441: *
                    442: *                 Multiply by 1/SCALE if doing so will not cause
                    443: *                 overflow.
                    444: *
                    445:                   IX = IZAMAX( N-1, WORK, 1 )
                    446:                   XNORM = CABS1( WORK( IX, 1 ) )
                    447:                   IF( SCALE.LT.XNORM*SMLNUM .OR. SCALE.EQ.ZERO )
                    448:      $               GO TO 40
                    449:                   CALL ZDRSCL( N, SCALE, WORK, 1 )
                    450:                END IF
                    451:                GO TO 30
                    452:             END IF
                    453: *
                    454:             SEP( KS ) = ONE / MAX( EST, SMLNUM )
                    455:          END IF
                    456: *
                    457:    40    CONTINUE
                    458:          KS = KS + 1
                    459:    50 CONTINUE
                    460:       RETURN
                    461: *
                    462: *     End of ZTRSNA
                    463: *
                    464:       END

CVSweb interface <joel.bertrand@systella.fr>