File:  [local] / rpl / lapack / lapack / ztrsen.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:22:46 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour globale de Lapack 3.2.2.

    1:       SUBROUTINE ZTRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, W, M, S,
    2:      $                   SEP, WORK, LWORK, INFO )
    3: *
    4: *  -- LAPACK routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH.
   10: *
   11: *     .. Scalar Arguments ..
   12:       CHARACTER          COMPQ, JOB
   13:       INTEGER            INFO, LDQ, LDT, LWORK, M, N
   14:       DOUBLE PRECISION   S, SEP
   15: *     ..
   16: *     .. Array Arguments ..
   17:       LOGICAL            SELECT( * )
   18:       COMPLEX*16         Q( LDQ, * ), T( LDT, * ), W( * ), WORK( * )
   19: *     ..
   20: *
   21: *  Purpose
   22: *  =======
   23: *
   24: *  ZTRSEN reorders the Schur factorization of a complex matrix
   25: *  A = Q*T*Q**H, so that a selected cluster of eigenvalues appears in
   26: *  the leading positions on the diagonal of the upper triangular matrix
   27: *  T, and the leading columns of Q form an orthonormal basis of the
   28: *  corresponding right invariant subspace.
   29: *
   30: *  Optionally the routine computes the reciprocal condition numbers of
   31: *  the cluster of eigenvalues and/or the invariant subspace.
   32: *
   33: *  Arguments
   34: *  =========
   35: *
   36: *  JOB     (input) CHARACTER*1
   37: *          Specifies whether condition numbers are required for the
   38: *          cluster of eigenvalues (S) or the invariant subspace (SEP):
   39: *          = 'N': none;
   40: *          = 'E': for eigenvalues only (S);
   41: *          = 'V': for invariant subspace only (SEP);
   42: *          = 'B': for both eigenvalues and invariant subspace (S and
   43: *                 SEP).
   44: *
   45: *  COMPQ   (input) CHARACTER*1
   46: *          = 'V': update the matrix Q of Schur vectors;
   47: *          = 'N': do not update Q.
   48: *
   49: *  SELECT  (input) LOGICAL array, dimension (N)
   50: *          SELECT specifies the eigenvalues in the selected cluster. To
   51: *          select the j-th eigenvalue, SELECT(j) must be set to .TRUE..
   52: *
   53: *  N       (input) INTEGER
   54: *          The order of the matrix T. N >= 0.
   55: *
   56: *  T       (input/output) COMPLEX*16 array, dimension (LDT,N)
   57: *          On entry, the upper triangular matrix T.
   58: *          On exit, T is overwritten by the reordered matrix T, with the
   59: *          selected eigenvalues as the leading diagonal elements.
   60: *
   61: *  LDT     (input) INTEGER
   62: *          The leading dimension of the array T. LDT >= max(1,N).
   63: *
   64: *  Q       (input/output) COMPLEX*16 array, dimension (LDQ,N)
   65: *          On entry, if COMPQ = 'V', the matrix Q of Schur vectors.
   66: *          On exit, if COMPQ = 'V', Q has been postmultiplied by the
   67: *          unitary transformation matrix which reorders T; the leading M
   68: *          columns of Q form an orthonormal basis for the specified
   69: *          invariant subspace.
   70: *          If COMPQ = 'N', Q is not referenced.
   71: *
   72: *  LDQ     (input) INTEGER
   73: *          The leading dimension of the array Q.
   74: *          LDQ >= 1; and if COMPQ = 'V', LDQ >= N.
   75: *
   76: *  W       (output) COMPLEX*16 array, dimension (N)
   77: *          The reordered eigenvalues of T, in the same order as they
   78: *          appear on the diagonal of T.
   79: *
   80: *  M       (output) INTEGER
   81: *          The dimension of the specified invariant subspace.
   82: *          0 <= M <= N.
   83: *
   84: *  S       (output) DOUBLE PRECISION
   85: *          If JOB = 'E' or 'B', S is a lower bound on the reciprocal
   86: *          condition number for the selected cluster of eigenvalues.
   87: *          S cannot underestimate the true reciprocal condition number
   88: *          by more than a factor of sqrt(N). If M = 0 or N, S = 1.
   89: *          If JOB = 'N' or 'V', S is not referenced.
   90: *
   91: *  SEP     (output) DOUBLE PRECISION
   92: *          If JOB = 'V' or 'B', SEP is the estimated reciprocal
   93: *          condition number of the specified invariant subspace. If
   94: *          M = 0 or N, SEP = norm(T).
   95: *          If JOB = 'N' or 'E', SEP is not referenced.
   96: *
   97: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
   98: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
   99: *
  100: *  LWORK   (input) INTEGER
  101: *          The dimension of the array WORK.
  102: *          If JOB = 'N', LWORK >= 1;
  103: *          if JOB = 'E', LWORK = max(1,M*(N-M));
  104: *          if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)).
  105: *
  106: *          If LWORK = -1, then a workspace query is assumed; the routine
  107: *          only calculates the optimal size of the WORK array, returns
  108: *          this value as the first entry of the WORK array, and no error
  109: *          message related to LWORK is issued by XERBLA.
  110: *
  111: *  INFO    (output) INTEGER
  112: *          = 0:  successful exit
  113: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  114: *
  115: *  Further Details
  116: *  ===============
  117: *
  118: *  ZTRSEN first collects the selected eigenvalues by computing a unitary
  119: *  transformation Z to move them to the top left corner of T. In other
  120: *  words, the selected eigenvalues are the eigenvalues of T11 in:
  121: *
  122: *                Z'*T*Z = ( T11 T12 ) n1
  123: *                         (  0  T22 ) n2
  124: *                            n1  n2
  125: *
  126: *  where N = n1+n2 and Z' means the conjugate transpose of Z. The first
  127: *  n1 columns of Z span the specified invariant subspace of T.
  128: *
  129: *  If T has been obtained from the Schur factorization of a matrix
  130: *  A = Q*T*Q', then the reordered Schur factorization of A is given by
  131: *  A = (Q*Z)*(Z'*T*Z)*(Q*Z)', and the first n1 columns of Q*Z span the
  132: *  corresponding invariant subspace of A.
  133: *
  134: *  The reciprocal condition number of the average of the eigenvalues of
  135: *  T11 may be returned in S. S lies between 0 (very badly conditioned)
  136: *  and 1 (very well conditioned). It is computed as follows. First we
  137: *  compute R so that
  138: *
  139: *                         P = ( I  R ) n1
  140: *                             ( 0  0 ) n2
  141: *                               n1 n2
  142: *
  143: *  is the projector on the invariant subspace associated with T11.
  144: *  R is the solution of the Sylvester equation:
  145: *
  146: *                        T11*R - R*T22 = T12.
  147: *
  148: *  Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote
  149: *  the two-norm of M. Then S is computed as the lower bound
  150: *
  151: *                      (1 + F-norm(R)**2)**(-1/2)
  152: *
  153: *  on the reciprocal of 2-norm(P), the true reciprocal condition number.
  154: *  S cannot underestimate 1 / 2-norm(P) by more than a factor of
  155: *  sqrt(N).
  156: *
  157: *  An approximate error bound for the computed average of the
  158: *  eigenvalues of T11 is
  159: *
  160: *                         EPS * norm(T) / S
  161: *
  162: *  where EPS is the machine precision.
  163: *
  164: *  The reciprocal condition number of the right invariant subspace
  165: *  spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP.
  166: *  SEP is defined as the separation of T11 and T22:
  167: *
  168: *                     sep( T11, T22 ) = sigma-min( C )
  169: *
  170: *  where sigma-min(C) is the smallest singular value of the
  171: *  n1*n2-by-n1*n2 matrix
  172: *
  173: *     C  = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) )
  174: *
  175: *  I(m) is an m by m identity matrix, and kprod denotes the Kronecker
  176: *  product. We estimate sigma-min(C) by the reciprocal of an estimate of
  177: *  the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C)
  178: *  cannot differ from sigma-min(C) by more than a factor of sqrt(n1*n2).
  179: *
  180: *  When SEP is small, small changes in T can cause large changes in
  181: *  the invariant subspace. An approximate bound on the maximum angular
  182: *  error in the computed right invariant subspace is
  183: *
  184: *                      EPS * norm(T) / SEP
  185: *
  186: *  =====================================================================
  187: *
  188: *     .. Parameters ..
  189:       DOUBLE PRECISION   ZERO, ONE
  190:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  191: *     ..
  192: *     .. Local Scalars ..
  193:       LOGICAL            LQUERY, WANTBH, WANTQ, WANTS, WANTSP
  194:       INTEGER            IERR, K, KASE, KS, LWMIN, N1, N2, NN
  195:       DOUBLE PRECISION   EST, RNORM, SCALE
  196: *     ..
  197: *     .. Local Arrays ..
  198:       INTEGER            ISAVE( 3 )
  199:       DOUBLE PRECISION   RWORK( 1 )
  200: *     ..
  201: *     .. External Functions ..
  202:       LOGICAL            LSAME
  203:       DOUBLE PRECISION   ZLANGE
  204:       EXTERNAL           LSAME, ZLANGE
  205: *     ..
  206: *     .. External Subroutines ..
  207:       EXTERNAL           XERBLA, ZLACN2, ZLACPY, ZTREXC, ZTRSYL
  208: *     ..
  209: *     .. Intrinsic Functions ..
  210:       INTRINSIC          MAX, SQRT
  211: *     ..
  212: *     .. Executable Statements ..
  213: *
  214: *     Decode and test the input parameters.
  215: *
  216:       WANTBH = LSAME( JOB, 'B' )
  217:       WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
  218:       WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH
  219:       WANTQ = LSAME( COMPQ, 'V' )
  220: *
  221: *     Set M to the number of selected eigenvalues.
  222: *
  223:       M = 0
  224:       DO 10 K = 1, N
  225:          IF( SELECT( K ) )
  226:      $      M = M + 1
  227:    10 CONTINUE
  228: *
  229:       N1 = M
  230:       N2 = N - M
  231:       NN = N1*N2
  232: *
  233:       INFO = 0
  234:       LQUERY = ( LWORK.EQ.-1 )
  235: *
  236:       IF( WANTSP ) THEN
  237:          LWMIN = MAX( 1, 2*NN )
  238:       ELSE IF( LSAME( JOB, 'N' ) ) THEN
  239:          LWMIN = 1
  240:       ELSE IF( LSAME( JOB, 'E' ) ) THEN
  241:          LWMIN = MAX( 1, NN )
  242:       END IF
  243: *
  244:       IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.WANTS .AND. .NOT.WANTSP )
  245:      $     THEN
  246:          INFO = -1
  247:       ELSE IF( .NOT.LSAME( COMPQ, 'N' ) .AND. .NOT.WANTQ ) THEN
  248:          INFO = -2
  249:       ELSE IF( N.LT.0 ) THEN
  250:          INFO = -4
  251:       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
  252:          INFO = -6
  253:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
  254:          INFO = -8
  255:       ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  256:          INFO = -14
  257:       END IF
  258: *
  259:       IF( INFO.EQ.0 ) THEN
  260:          WORK( 1 ) = LWMIN
  261:       END IF
  262: *
  263:       IF( INFO.NE.0 ) THEN
  264:          CALL XERBLA( 'ZTRSEN', -INFO )
  265:          RETURN
  266:       ELSE IF( LQUERY ) THEN
  267:          RETURN
  268:       END IF
  269: *
  270: *     Quick return if possible
  271: *
  272:       IF( M.EQ.N .OR. M.EQ.0 ) THEN
  273:          IF( WANTS )
  274:      $      S = ONE
  275:          IF( WANTSP )
  276:      $      SEP = ZLANGE( '1', N, N, T, LDT, RWORK )
  277:          GO TO 40
  278:       END IF
  279: *
  280: *     Collect the selected eigenvalues at the top left corner of T.
  281: *
  282:       KS = 0
  283:       DO 20 K = 1, N
  284:          IF( SELECT( K ) ) THEN
  285:             KS = KS + 1
  286: *
  287: *           Swap the K-th eigenvalue to position KS.
  288: *
  289:             IF( K.NE.KS )
  290:      $         CALL ZTREXC( COMPQ, N, T, LDT, Q, LDQ, K, KS, IERR )
  291:          END IF
  292:    20 CONTINUE
  293: *
  294:       IF( WANTS ) THEN
  295: *
  296: *        Solve the Sylvester equation for R:
  297: *
  298: *           T11*R - R*T22 = scale*T12
  299: *
  300:          CALL ZLACPY( 'F', N1, N2, T( 1, N1+1 ), LDT, WORK, N1 )
  301:          CALL ZTRSYL( 'N', 'N', -1, N1, N2, T, LDT, T( N1+1, N1+1 ),
  302:      $                LDT, WORK, N1, SCALE, IERR )
  303: *
  304: *        Estimate the reciprocal of the condition number of the cluster
  305: *        of eigenvalues.
  306: *
  307:          RNORM = ZLANGE( 'F', N1, N2, WORK, N1, RWORK )
  308:          IF( RNORM.EQ.ZERO ) THEN
  309:             S = ONE
  310:          ELSE
  311:             S = SCALE / ( SQRT( SCALE*SCALE / RNORM+RNORM )*
  312:      $          SQRT( RNORM ) )
  313:          END IF
  314:       END IF
  315: *
  316:       IF( WANTSP ) THEN
  317: *
  318: *        Estimate sep(T11,T22).
  319: *
  320:          EST = ZERO
  321:          KASE = 0
  322:    30    CONTINUE
  323:          CALL ZLACN2( NN, WORK( NN+1 ), WORK, EST, KASE, ISAVE )
  324:          IF( KASE.NE.0 ) THEN
  325:             IF( KASE.EQ.1 ) THEN
  326: *
  327: *              Solve T11*R - R*T22 = scale*X.
  328: *
  329:                CALL ZTRSYL( 'N', 'N', -1, N1, N2, T, LDT,
  330:      $                      T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
  331:      $                      IERR )
  332:             ELSE
  333: *
  334: *              Solve T11'*R - R*T22' = scale*X.
  335: *
  336:                CALL ZTRSYL( 'C', 'C', -1, N1, N2, T, LDT,
  337:      $                      T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
  338:      $                      IERR )
  339:             END IF
  340:             GO TO 30
  341:          END IF
  342: *
  343:          SEP = SCALE / EST
  344:       END IF
  345: *
  346:    40 CONTINUE
  347: *
  348: *     Copy reordered eigenvalues to W.
  349: *
  350:       DO 50 K = 1, N
  351:          W( K ) = T( K, K )
  352:    50 CONTINUE
  353: *
  354:       WORK( 1 ) = LWMIN
  355: *
  356:       RETURN
  357: *
  358: *     End of ZTRSEN
  359: *
  360:       END

CVSweb interface <joel.bertrand@systella.fr>