Annotation of rpl/lapack/lapack/ztrsen.f, revision 1.14

1.9       bertrand    1: *> \brief \b ZTRSEN
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download ZTRSEN + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztrsen.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztrsen.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztrsen.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZTRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, W, M, S,
                     22: *                          SEP, WORK, LWORK, INFO )
                     23: * 
                     24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          COMPQ, JOB
                     26: *       INTEGER            INFO, LDQ, LDT, LWORK, M, N
                     27: *       DOUBLE PRECISION   S, SEP
                     28: *       ..
                     29: *       .. Array Arguments ..
                     30: *       LOGICAL            SELECT( * )
                     31: *       COMPLEX*16         Q( LDQ, * ), T( LDT, * ), W( * ), WORK( * )
                     32: *       ..
                     33: *  
                     34: *
                     35: *> \par Purpose:
                     36: *  =============
                     37: *>
                     38: *> \verbatim
                     39: *>
                     40: *> ZTRSEN reorders the Schur factorization of a complex matrix
                     41: *> A = Q*T*Q**H, so that a selected cluster of eigenvalues appears in
                     42: *> the leading positions on the diagonal of the upper triangular matrix
                     43: *> T, and the leading columns of Q form an orthonormal basis of the
                     44: *> corresponding right invariant subspace.
                     45: *>
                     46: *> Optionally the routine computes the reciprocal condition numbers of
                     47: *> the cluster of eigenvalues and/or the invariant subspace.
                     48: *> \endverbatim
                     49: *
                     50: *  Arguments:
                     51: *  ==========
                     52: *
                     53: *> \param[in] JOB
                     54: *> \verbatim
                     55: *>          JOB is CHARACTER*1
                     56: *>          Specifies whether condition numbers are required for the
                     57: *>          cluster of eigenvalues (S) or the invariant subspace (SEP):
                     58: *>          = 'N': none;
                     59: *>          = 'E': for eigenvalues only (S);
                     60: *>          = 'V': for invariant subspace only (SEP);
                     61: *>          = 'B': for both eigenvalues and invariant subspace (S and
                     62: *>                 SEP).
                     63: *> \endverbatim
                     64: *>
                     65: *> \param[in] COMPQ
                     66: *> \verbatim
                     67: *>          COMPQ is CHARACTER*1
                     68: *>          = 'V': update the matrix Q of Schur vectors;
                     69: *>          = 'N': do not update Q.
                     70: *> \endverbatim
                     71: *>
                     72: *> \param[in] SELECT
                     73: *> \verbatim
                     74: *>          SELECT is LOGICAL array, dimension (N)
                     75: *>          SELECT specifies the eigenvalues in the selected cluster. To
                     76: *>          select the j-th eigenvalue, SELECT(j) must be set to .TRUE..
                     77: *> \endverbatim
                     78: *>
                     79: *> \param[in] N
                     80: *> \verbatim
                     81: *>          N is INTEGER
                     82: *>          The order of the matrix T. N >= 0.
                     83: *> \endverbatim
                     84: *>
                     85: *> \param[in,out] T
                     86: *> \verbatim
                     87: *>          T is COMPLEX*16 array, dimension (LDT,N)
                     88: *>          On entry, the upper triangular matrix T.
                     89: *>          On exit, T is overwritten by the reordered matrix T, with the
                     90: *>          selected eigenvalues as the leading diagonal elements.
                     91: *> \endverbatim
                     92: *>
                     93: *> \param[in] LDT
                     94: *> \verbatim
                     95: *>          LDT is INTEGER
                     96: *>          The leading dimension of the array T. LDT >= max(1,N).
                     97: *> \endverbatim
                     98: *>
                     99: *> \param[in,out] Q
                    100: *> \verbatim
                    101: *>          Q is COMPLEX*16 array, dimension (LDQ,N)
                    102: *>          On entry, if COMPQ = 'V', the matrix Q of Schur vectors.
                    103: *>          On exit, if COMPQ = 'V', Q has been postmultiplied by the
                    104: *>          unitary transformation matrix which reorders T; the leading M
                    105: *>          columns of Q form an orthonormal basis for the specified
                    106: *>          invariant subspace.
                    107: *>          If COMPQ = 'N', Q is not referenced.
                    108: *> \endverbatim
                    109: *>
                    110: *> \param[in] LDQ
                    111: *> \verbatim
                    112: *>          LDQ is INTEGER
                    113: *>          The leading dimension of the array Q.
                    114: *>          LDQ >= 1; and if COMPQ = 'V', LDQ >= N.
                    115: *> \endverbatim
                    116: *>
                    117: *> \param[out] W
                    118: *> \verbatim
                    119: *>          W is COMPLEX*16 array, dimension (N)
                    120: *>          The reordered eigenvalues of T, in the same order as they
                    121: *>          appear on the diagonal of T.
                    122: *> \endverbatim
                    123: *>
                    124: *> \param[out] M
                    125: *> \verbatim
                    126: *>          M is INTEGER
                    127: *>          The dimension of the specified invariant subspace.
                    128: *>          0 <= M <= N.
                    129: *> \endverbatim
                    130: *>
                    131: *> \param[out] S
                    132: *> \verbatim
                    133: *>          S is DOUBLE PRECISION
                    134: *>          If JOB = 'E' or 'B', S is a lower bound on the reciprocal
                    135: *>          condition number for the selected cluster of eigenvalues.
                    136: *>          S cannot underestimate the true reciprocal condition number
                    137: *>          by more than a factor of sqrt(N). If M = 0 or N, S = 1.
                    138: *>          If JOB = 'N' or 'V', S is not referenced.
                    139: *> \endverbatim
                    140: *>
                    141: *> \param[out] SEP
                    142: *> \verbatim
                    143: *>          SEP is DOUBLE PRECISION
                    144: *>          If JOB = 'V' or 'B', SEP is the estimated reciprocal
                    145: *>          condition number of the specified invariant subspace. If
                    146: *>          M = 0 or N, SEP = norm(T).
                    147: *>          If JOB = 'N' or 'E', SEP is not referenced.
                    148: *> \endverbatim
                    149: *>
                    150: *> \param[out] WORK
                    151: *> \verbatim
                    152: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                    153: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    154: *> \endverbatim
                    155: *>
                    156: *> \param[in] LWORK
                    157: *> \verbatim
                    158: *>          LWORK is INTEGER
                    159: *>          The dimension of the array WORK.
                    160: *>          If JOB = 'N', LWORK >= 1;
                    161: *>          if JOB = 'E', LWORK = max(1,M*(N-M));
                    162: *>          if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)).
                    163: *>
                    164: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    165: *>          only calculates the optimal size of the WORK array, returns
                    166: *>          this value as the first entry of the WORK array, and no error
                    167: *>          message related to LWORK is issued by XERBLA.
                    168: *> \endverbatim
                    169: *>
                    170: *> \param[out] INFO
                    171: *> \verbatim
                    172: *>          INFO is INTEGER
                    173: *>          = 0:  successful exit
                    174: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    175: *> \endverbatim
                    176: *
                    177: *  Authors:
                    178: *  ========
                    179: *
                    180: *> \author Univ. of Tennessee 
                    181: *> \author Univ. of California Berkeley 
                    182: *> \author Univ. of Colorado Denver 
                    183: *> \author NAG Ltd. 
                    184: *
                    185: *> \date November 2011
                    186: *
                    187: *> \ingroup complex16OTHERcomputational
                    188: *
                    189: *> \par Further Details:
                    190: *  =====================
                    191: *>
                    192: *> \verbatim
                    193: *>
                    194: *>  ZTRSEN first collects the selected eigenvalues by computing a unitary
                    195: *>  transformation Z to move them to the top left corner of T. In other
                    196: *>  words, the selected eigenvalues are the eigenvalues of T11 in:
                    197: *>
                    198: *>          Z**H * T * Z = ( T11 T12 ) n1
                    199: *>                         (  0  T22 ) n2
                    200: *>                            n1  n2
                    201: *>
                    202: *>  where N = n1+n2. The first
                    203: *>  n1 columns of Z span the specified invariant subspace of T.
                    204: *>
                    205: *>  If T has been obtained from the Schur factorization of a matrix
                    206: *>  A = Q*T*Q**H, then the reordered Schur factorization of A is given by
                    207: *>  A = (Q*Z)*(Z**H*T*Z)*(Q*Z)**H, and the first n1 columns of Q*Z span the
                    208: *>  corresponding invariant subspace of A.
                    209: *>
                    210: *>  The reciprocal condition number of the average of the eigenvalues of
                    211: *>  T11 may be returned in S. S lies between 0 (very badly conditioned)
                    212: *>  and 1 (very well conditioned). It is computed as follows. First we
                    213: *>  compute R so that
                    214: *>
                    215: *>                         P = ( I  R ) n1
                    216: *>                             ( 0  0 ) n2
                    217: *>                               n1 n2
                    218: *>
                    219: *>  is the projector on the invariant subspace associated with T11.
                    220: *>  R is the solution of the Sylvester equation:
                    221: *>
                    222: *>                        T11*R - R*T22 = T12.
                    223: *>
                    224: *>  Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote
                    225: *>  the two-norm of M. Then S is computed as the lower bound
                    226: *>
                    227: *>                      (1 + F-norm(R)**2)**(-1/2)
                    228: *>
                    229: *>  on the reciprocal of 2-norm(P), the true reciprocal condition number.
                    230: *>  S cannot underestimate 1 / 2-norm(P) by more than a factor of
                    231: *>  sqrt(N).
                    232: *>
                    233: *>  An approximate error bound for the computed average of the
                    234: *>  eigenvalues of T11 is
                    235: *>
                    236: *>                         EPS * norm(T) / S
                    237: *>
                    238: *>  where EPS is the machine precision.
                    239: *>
                    240: *>  The reciprocal condition number of the right invariant subspace
                    241: *>  spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP.
                    242: *>  SEP is defined as the separation of T11 and T22:
                    243: *>
                    244: *>                     sep( T11, T22 ) = sigma-min( C )
                    245: *>
                    246: *>  where sigma-min(C) is the smallest singular value of the
                    247: *>  n1*n2-by-n1*n2 matrix
                    248: *>
                    249: *>     C  = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) )
                    250: *>
                    251: *>  I(m) is an m by m identity matrix, and kprod denotes the Kronecker
                    252: *>  product. We estimate sigma-min(C) by the reciprocal of an estimate of
                    253: *>  the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C)
                    254: *>  cannot differ from sigma-min(C) by more than a factor of sqrt(n1*n2).
                    255: *>
                    256: *>  When SEP is small, small changes in T can cause large changes in
                    257: *>  the invariant subspace. An approximate bound on the maximum angular
                    258: *>  error in the computed right invariant subspace is
                    259: *>
                    260: *>                      EPS * norm(T) / SEP
                    261: *> \endverbatim
                    262: *>
                    263: *  =====================================================================
1.1       bertrand  264:       SUBROUTINE ZTRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, W, M, S,
                    265:      $                   SEP, WORK, LWORK, INFO )
                    266: *
1.9       bertrand  267: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  268: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    269: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9       bertrand  270: *     November 2011
1.1       bertrand  271: *
                    272: *     .. Scalar Arguments ..
                    273:       CHARACTER          COMPQ, JOB
                    274:       INTEGER            INFO, LDQ, LDT, LWORK, M, N
                    275:       DOUBLE PRECISION   S, SEP
                    276: *     ..
                    277: *     .. Array Arguments ..
                    278:       LOGICAL            SELECT( * )
                    279:       COMPLEX*16         Q( LDQ, * ), T( LDT, * ), W( * ), WORK( * )
                    280: *     ..
                    281: *
                    282: *  =====================================================================
                    283: *
                    284: *     .. Parameters ..
                    285:       DOUBLE PRECISION   ZERO, ONE
                    286:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    287: *     ..
                    288: *     .. Local Scalars ..
                    289:       LOGICAL            LQUERY, WANTBH, WANTQ, WANTS, WANTSP
                    290:       INTEGER            IERR, K, KASE, KS, LWMIN, N1, N2, NN
                    291:       DOUBLE PRECISION   EST, RNORM, SCALE
                    292: *     ..
                    293: *     .. Local Arrays ..
                    294:       INTEGER            ISAVE( 3 )
                    295:       DOUBLE PRECISION   RWORK( 1 )
                    296: *     ..
                    297: *     .. External Functions ..
                    298:       LOGICAL            LSAME
                    299:       DOUBLE PRECISION   ZLANGE
                    300:       EXTERNAL           LSAME, ZLANGE
                    301: *     ..
                    302: *     .. External Subroutines ..
                    303:       EXTERNAL           XERBLA, ZLACN2, ZLACPY, ZTREXC, ZTRSYL
                    304: *     ..
                    305: *     .. Intrinsic Functions ..
                    306:       INTRINSIC          MAX, SQRT
                    307: *     ..
                    308: *     .. Executable Statements ..
                    309: *
                    310: *     Decode and test the input parameters.
                    311: *
                    312:       WANTBH = LSAME( JOB, 'B' )
                    313:       WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
                    314:       WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH
                    315:       WANTQ = LSAME( COMPQ, 'V' )
                    316: *
                    317: *     Set M to the number of selected eigenvalues.
                    318: *
                    319:       M = 0
                    320:       DO 10 K = 1, N
                    321:          IF( SELECT( K ) )
                    322:      $      M = M + 1
                    323:    10 CONTINUE
                    324: *
                    325:       N1 = M
                    326:       N2 = N - M
                    327:       NN = N1*N2
                    328: *
                    329:       INFO = 0
                    330:       LQUERY = ( LWORK.EQ.-1 )
                    331: *
                    332:       IF( WANTSP ) THEN
                    333:          LWMIN = MAX( 1, 2*NN )
                    334:       ELSE IF( LSAME( JOB, 'N' ) ) THEN
                    335:          LWMIN = 1
                    336:       ELSE IF( LSAME( JOB, 'E' ) ) THEN
                    337:          LWMIN = MAX( 1, NN )
                    338:       END IF
                    339: *
                    340:       IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.WANTS .AND. .NOT.WANTSP )
                    341:      $     THEN
                    342:          INFO = -1
                    343:       ELSE IF( .NOT.LSAME( COMPQ, 'N' ) .AND. .NOT.WANTQ ) THEN
                    344:          INFO = -2
                    345:       ELSE IF( N.LT.0 ) THEN
                    346:          INFO = -4
                    347:       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
                    348:          INFO = -6
                    349:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
                    350:          INFO = -8
                    351:       ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    352:          INFO = -14
                    353:       END IF
                    354: *
                    355:       IF( INFO.EQ.0 ) THEN
                    356:          WORK( 1 ) = LWMIN
                    357:       END IF
                    358: *
                    359:       IF( INFO.NE.0 ) THEN
                    360:          CALL XERBLA( 'ZTRSEN', -INFO )
                    361:          RETURN
                    362:       ELSE IF( LQUERY ) THEN
                    363:          RETURN
                    364:       END IF
                    365: *
                    366: *     Quick return if possible
                    367: *
                    368:       IF( M.EQ.N .OR. M.EQ.0 ) THEN
                    369:          IF( WANTS )
                    370:      $      S = ONE
                    371:          IF( WANTSP )
                    372:      $      SEP = ZLANGE( '1', N, N, T, LDT, RWORK )
                    373:          GO TO 40
                    374:       END IF
                    375: *
                    376: *     Collect the selected eigenvalues at the top left corner of T.
                    377: *
                    378:       KS = 0
                    379:       DO 20 K = 1, N
                    380:          IF( SELECT( K ) ) THEN
                    381:             KS = KS + 1
                    382: *
                    383: *           Swap the K-th eigenvalue to position KS.
                    384: *
                    385:             IF( K.NE.KS )
                    386:      $         CALL ZTREXC( COMPQ, N, T, LDT, Q, LDQ, K, KS, IERR )
                    387:          END IF
                    388:    20 CONTINUE
                    389: *
                    390:       IF( WANTS ) THEN
                    391: *
                    392: *        Solve the Sylvester equation for R:
                    393: *
                    394: *           T11*R - R*T22 = scale*T12
                    395: *
                    396:          CALL ZLACPY( 'F', N1, N2, T( 1, N1+1 ), LDT, WORK, N1 )
                    397:          CALL ZTRSYL( 'N', 'N', -1, N1, N2, T, LDT, T( N1+1, N1+1 ),
                    398:      $                LDT, WORK, N1, SCALE, IERR )
                    399: *
                    400: *        Estimate the reciprocal of the condition number of the cluster
                    401: *        of eigenvalues.
                    402: *
                    403:          RNORM = ZLANGE( 'F', N1, N2, WORK, N1, RWORK )
                    404:          IF( RNORM.EQ.ZERO ) THEN
                    405:             S = ONE
                    406:          ELSE
                    407:             S = SCALE / ( SQRT( SCALE*SCALE / RNORM+RNORM )*
                    408:      $          SQRT( RNORM ) )
                    409:          END IF
                    410:       END IF
                    411: *
                    412:       IF( WANTSP ) THEN
                    413: *
                    414: *        Estimate sep(T11,T22).
                    415: *
                    416:          EST = ZERO
                    417:          KASE = 0
                    418:    30    CONTINUE
                    419:          CALL ZLACN2( NN, WORK( NN+1 ), WORK, EST, KASE, ISAVE )
                    420:          IF( KASE.NE.0 ) THEN
                    421:             IF( KASE.EQ.1 ) THEN
                    422: *
                    423: *              Solve T11*R - R*T22 = scale*X.
                    424: *
                    425:                CALL ZTRSYL( 'N', 'N', -1, N1, N2, T, LDT,
                    426:      $                      T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
                    427:      $                      IERR )
                    428:             ELSE
                    429: *
1.8       bertrand  430: *              Solve T11**H*R - R*T22**H = scale*X.
1.1       bertrand  431: *
                    432:                CALL ZTRSYL( 'C', 'C', -1, N1, N2, T, LDT,
                    433:      $                      T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
                    434:      $                      IERR )
                    435:             END IF
                    436:             GO TO 30
                    437:          END IF
                    438: *
                    439:          SEP = SCALE / EST
                    440:       END IF
                    441: *
                    442:    40 CONTINUE
                    443: *
                    444: *     Copy reordered eigenvalues to W.
                    445: *
                    446:       DO 50 K = 1, N
                    447:          W( K ) = T( K, K )
                    448:    50 CONTINUE
                    449: *
                    450:       WORK( 1 ) = LWMIN
                    451: *
                    452:       RETURN
                    453: *
                    454: *     End of ZTRSEN
                    455: *
                    456:       END

CVSweb interface <joel.bertrand@systella.fr>