Annotation of rpl/lapack/lapack/ztrsen.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZTRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, W, M, S,
        !             2:      $                   SEP, WORK, LWORK, INFO )
        !             3: *
        !             4: *  -- LAPACK routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH.
        !            10: *
        !            11: *     .. Scalar Arguments ..
        !            12:       CHARACTER          COMPQ, JOB
        !            13:       INTEGER            INFO, LDQ, LDT, LWORK, M, N
        !            14:       DOUBLE PRECISION   S, SEP
        !            15: *     ..
        !            16: *     .. Array Arguments ..
        !            17:       LOGICAL            SELECT( * )
        !            18:       COMPLEX*16         Q( LDQ, * ), T( LDT, * ), W( * ), WORK( * )
        !            19: *     ..
        !            20: *
        !            21: *  Purpose
        !            22: *  =======
        !            23: *
        !            24: *  ZTRSEN reorders the Schur factorization of a complex matrix
        !            25: *  A = Q*T*Q**H, so that a selected cluster of eigenvalues appears in
        !            26: *  the leading positions on the diagonal of the upper triangular matrix
        !            27: *  T, and the leading columns of Q form an orthonormal basis of the
        !            28: *  corresponding right invariant subspace.
        !            29: *
        !            30: *  Optionally the routine computes the reciprocal condition numbers of
        !            31: *  the cluster of eigenvalues and/or the invariant subspace.
        !            32: *
        !            33: *  Arguments
        !            34: *  =========
        !            35: *
        !            36: *  JOB     (input) CHARACTER*1
        !            37: *          Specifies whether condition numbers are required for the
        !            38: *          cluster of eigenvalues (S) or the invariant subspace (SEP):
        !            39: *          = 'N': none;
        !            40: *          = 'E': for eigenvalues only (S);
        !            41: *          = 'V': for invariant subspace only (SEP);
        !            42: *          = 'B': for both eigenvalues and invariant subspace (S and
        !            43: *                 SEP).
        !            44: *
        !            45: *  COMPQ   (input) CHARACTER*1
        !            46: *          = 'V': update the matrix Q of Schur vectors;
        !            47: *          = 'N': do not update Q.
        !            48: *
        !            49: *  SELECT  (input) LOGICAL array, dimension (N)
        !            50: *          SELECT specifies the eigenvalues in the selected cluster. To
        !            51: *          select the j-th eigenvalue, SELECT(j) must be set to .TRUE..
        !            52: *
        !            53: *  N       (input) INTEGER
        !            54: *          The order of the matrix T. N >= 0.
        !            55: *
        !            56: *  T       (input/output) COMPLEX*16 array, dimension (LDT,N)
        !            57: *          On entry, the upper triangular matrix T.
        !            58: *          On exit, T is overwritten by the reordered matrix T, with the
        !            59: *          selected eigenvalues as the leading diagonal elements.
        !            60: *
        !            61: *  LDT     (input) INTEGER
        !            62: *          The leading dimension of the array T. LDT >= max(1,N).
        !            63: *
        !            64: *  Q       (input/output) COMPLEX*16 array, dimension (LDQ,N)
        !            65: *          On entry, if COMPQ = 'V', the matrix Q of Schur vectors.
        !            66: *          On exit, if COMPQ = 'V', Q has been postmultiplied by the
        !            67: *          unitary transformation matrix which reorders T; the leading M
        !            68: *          columns of Q form an orthonormal basis for the specified
        !            69: *          invariant subspace.
        !            70: *          If COMPQ = 'N', Q is not referenced.
        !            71: *
        !            72: *  LDQ     (input) INTEGER
        !            73: *          The leading dimension of the array Q.
        !            74: *          LDQ >= 1; and if COMPQ = 'V', LDQ >= N.
        !            75: *
        !            76: *  W       (output) COMPLEX*16 array, dimension (N)
        !            77: *          The reordered eigenvalues of T, in the same order as they
        !            78: *          appear on the diagonal of T.
        !            79: *
        !            80: *  M       (output) INTEGER
        !            81: *          The dimension of the specified invariant subspace.
        !            82: *          0 <= M <= N.
        !            83: *
        !            84: *  S       (output) DOUBLE PRECISION
        !            85: *          If JOB = 'E' or 'B', S is a lower bound on the reciprocal
        !            86: *          condition number for the selected cluster of eigenvalues.
        !            87: *          S cannot underestimate the true reciprocal condition number
        !            88: *          by more than a factor of sqrt(N). If M = 0 or N, S = 1.
        !            89: *          If JOB = 'N' or 'V', S is not referenced.
        !            90: *
        !            91: *  SEP     (output) DOUBLE PRECISION
        !            92: *          If JOB = 'V' or 'B', SEP is the estimated reciprocal
        !            93: *          condition number of the specified invariant subspace. If
        !            94: *          M = 0 or N, SEP = norm(T).
        !            95: *          If JOB = 'N' or 'E', SEP is not referenced.
        !            96: *
        !            97: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
        !            98: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !            99: *
        !           100: *  LWORK   (input) INTEGER
        !           101: *          The dimension of the array WORK.
        !           102: *          If JOB = 'N', LWORK >= 1;
        !           103: *          if JOB = 'E', LWORK = max(1,M*(N-M));
        !           104: *          if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)).
        !           105: *
        !           106: *          If LWORK = -1, then a workspace query is assumed; the routine
        !           107: *          only calculates the optimal size of the WORK array, returns
        !           108: *          this value as the first entry of the WORK array, and no error
        !           109: *          message related to LWORK is issued by XERBLA.
        !           110: *
        !           111: *  INFO    (output) INTEGER
        !           112: *          = 0:  successful exit
        !           113: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           114: *
        !           115: *  Further Details
        !           116: *  ===============
        !           117: *
        !           118: *  ZTRSEN first collects the selected eigenvalues by computing a unitary
        !           119: *  transformation Z to move them to the top left corner of T. In other
        !           120: *  words, the selected eigenvalues are the eigenvalues of T11 in:
        !           121: *
        !           122: *                Z'*T*Z = ( T11 T12 ) n1
        !           123: *                         (  0  T22 ) n2
        !           124: *                            n1  n2
        !           125: *
        !           126: *  where N = n1+n2 and Z' means the conjugate transpose of Z. The first
        !           127: *  n1 columns of Z span the specified invariant subspace of T.
        !           128: *
        !           129: *  If T has been obtained from the Schur factorization of a matrix
        !           130: *  A = Q*T*Q', then the reordered Schur factorization of A is given by
        !           131: *  A = (Q*Z)*(Z'*T*Z)*(Q*Z)', and the first n1 columns of Q*Z span the
        !           132: *  corresponding invariant subspace of A.
        !           133: *
        !           134: *  The reciprocal condition number of the average of the eigenvalues of
        !           135: *  T11 may be returned in S. S lies between 0 (very badly conditioned)
        !           136: *  and 1 (very well conditioned). It is computed as follows. First we
        !           137: *  compute R so that
        !           138: *
        !           139: *                         P = ( I  R ) n1
        !           140: *                             ( 0  0 ) n2
        !           141: *                               n1 n2
        !           142: *
        !           143: *  is the projector on the invariant subspace associated with T11.
        !           144: *  R is the solution of the Sylvester equation:
        !           145: *
        !           146: *                        T11*R - R*T22 = T12.
        !           147: *
        !           148: *  Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote
        !           149: *  the two-norm of M. Then S is computed as the lower bound
        !           150: *
        !           151: *                      (1 + F-norm(R)**2)**(-1/2)
        !           152: *
        !           153: *  on the reciprocal of 2-norm(P), the true reciprocal condition number.
        !           154: *  S cannot underestimate 1 / 2-norm(P) by more than a factor of
        !           155: *  sqrt(N).
        !           156: *
        !           157: *  An approximate error bound for the computed average of the
        !           158: *  eigenvalues of T11 is
        !           159: *
        !           160: *                         EPS * norm(T) / S
        !           161: *
        !           162: *  where EPS is the machine precision.
        !           163: *
        !           164: *  The reciprocal condition number of the right invariant subspace
        !           165: *  spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP.
        !           166: *  SEP is defined as the separation of T11 and T22:
        !           167: *
        !           168: *                     sep( T11, T22 ) = sigma-min( C )
        !           169: *
        !           170: *  where sigma-min(C) is the smallest singular value of the
        !           171: *  n1*n2-by-n1*n2 matrix
        !           172: *
        !           173: *     C  = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) )
        !           174: *
        !           175: *  I(m) is an m by m identity matrix, and kprod denotes the Kronecker
        !           176: *  product. We estimate sigma-min(C) by the reciprocal of an estimate of
        !           177: *  the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C)
        !           178: *  cannot differ from sigma-min(C) by more than a factor of sqrt(n1*n2).
        !           179: *
        !           180: *  When SEP is small, small changes in T can cause large changes in
        !           181: *  the invariant subspace. An approximate bound on the maximum angular
        !           182: *  error in the computed right invariant subspace is
        !           183: *
        !           184: *                      EPS * norm(T) / SEP
        !           185: *
        !           186: *  =====================================================================
        !           187: *
        !           188: *     .. Parameters ..
        !           189:       DOUBLE PRECISION   ZERO, ONE
        !           190:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
        !           191: *     ..
        !           192: *     .. Local Scalars ..
        !           193:       LOGICAL            LQUERY, WANTBH, WANTQ, WANTS, WANTSP
        !           194:       INTEGER            IERR, K, KASE, KS, LWMIN, N1, N2, NN
        !           195:       DOUBLE PRECISION   EST, RNORM, SCALE
        !           196: *     ..
        !           197: *     .. Local Arrays ..
        !           198:       INTEGER            ISAVE( 3 )
        !           199:       DOUBLE PRECISION   RWORK( 1 )
        !           200: *     ..
        !           201: *     .. External Functions ..
        !           202:       LOGICAL            LSAME
        !           203:       DOUBLE PRECISION   ZLANGE
        !           204:       EXTERNAL           LSAME, ZLANGE
        !           205: *     ..
        !           206: *     .. External Subroutines ..
        !           207:       EXTERNAL           XERBLA, ZLACN2, ZLACPY, ZTREXC, ZTRSYL
        !           208: *     ..
        !           209: *     .. Intrinsic Functions ..
        !           210:       INTRINSIC          MAX, SQRT
        !           211: *     ..
        !           212: *     .. Executable Statements ..
        !           213: *
        !           214: *     Decode and test the input parameters.
        !           215: *
        !           216:       WANTBH = LSAME( JOB, 'B' )
        !           217:       WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
        !           218:       WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH
        !           219:       WANTQ = LSAME( COMPQ, 'V' )
        !           220: *
        !           221: *     Set M to the number of selected eigenvalues.
        !           222: *
        !           223:       M = 0
        !           224:       DO 10 K = 1, N
        !           225:          IF( SELECT( K ) )
        !           226:      $      M = M + 1
        !           227:    10 CONTINUE
        !           228: *
        !           229:       N1 = M
        !           230:       N2 = N - M
        !           231:       NN = N1*N2
        !           232: *
        !           233:       INFO = 0
        !           234:       LQUERY = ( LWORK.EQ.-1 )
        !           235: *
        !           236:       IF( WANTSP ) THEN
        !           237:          LWMIN = MAX( 1, 2*NN )
        !           238:       ELSE IF( LSAME( JOB, 'N' ) ) THEN
        !           239:          LWMIN = 1
        !           240:       ELSE IF( LSAME( JOB, 'E' ) ) THEN
        !           241:          LWMIN = MAX( 1, NN )
        !           242:       END IF
        !           243: *
        !           244:       IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.WANTS .AND. .NOT.WANTSP )
        !           245:      $     THEN
        !           246:          INFO = -1
        !           247:       ELSE IF( .NOT.LSAME( COMPQ, 'N' ) .AND. .NOT.WANTQ ) THEN
        !           248:          INFO = -2
        !           249:       ELSE IF( N.LT.0 ) THEN
        !           250:          INFO = -4
        !           251:       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
        !           252:          INFO = -6
        !           253:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
        !           254:          INFO = -8
        !           255:       ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
        !           256:          INFO = -14
        !           257:       END IF
        !           258: *
        !           259:       IF( INFO.EQ.0 ) THEN
        !           260:          WORK( 1 ) = LWMIN
        !           261:       END IF
        !           262: *
        !           263:       IF( INFO.NE.0 ) THEN
        !           264:          CALL XERBLA( 'ZTRSEN', -INFO )
        !           265:          RETURN
        !           266:       ELSE IF( LQUERY ) THEN
        !           267:          RETURN
        !           268:       END IF
        !           269: *
        !           270: *     Quick return if possible
        !           271: *
        !           272:       IF( M.EQ.N .OR. M.EQ.0 ) THEN
        !           273:          IF( WANTS )
        !           274:      $      S = ONE
        !           275:          IF( WANTSP )
        !           276:      $      SEP = ZLANGE( '1', N, N, T, LDT, RWORK )
        !           277:          GO TO 40
        !           278:       END IF
        !           279: *
        !           280: *     Collect the selected eigenvalues at the top left corner of T.
        !           281: *
        !           282:       KS = 0
        !           283:       DO 20 K = 1, N
        !           284:          IF( SELECT( K ) ) THEN
        !           285:             KS = KS + 1
        !           286: *
        !           287: *           Swap the K-th eigenvalue to position KS.
        !           288: *
        !           289:             IF( K.NE.KS )
        !           290:      $         CALL ZTREXC( COMPQ, N, T, LDT, Q, LDQ, K, KS, IERR )
        !           291:          END IF
        !           292:    20 CONTINUE
        !           293: *
        !           294:       IF( WANTS ) THEN
        !           295: *
        !           296: *        Solve the Sylvester equation for R:
        !           297: *
        !           298: *           T11*R - R*T22 = scale*T12
        !           299: *
        !           300:          CALL ZLACPY( 'F', N1, N2, T( 1, N1+1 ), LDT, WORK, N1 )
        !           301:          CALL ZTRSYL( 'N', 'N', -1, N1, N2, T, LDT, T( N1+1, N1+1 ),
        !           302:      $                LDT, WORK, N1, SCALE, IERR )
        !           303: *
        !           304: *        Estimate the reciprocal of the condition number of the cluster
        !           305: *        of eigenvalues.
        !           306: *
        !           307:          RNORM = ZLANGE( 'F', N1, N2, WORK, N1, RWORK )
        !           308:          IF( RNORM.EQ.ZERO ) THEN
        !           309:             S = ONE
        !           310:          ELSE
        !           311:             S = SCALE / ( SQRT( SCALE*SCALE / RNORM+RNORM )*
        !           312:      $          SQRT( RNORM ) )
        !           313:          END IF
        !           314:       END IF
        !           315: *
        !           316:       IF( WANTSP ) THEN
        !           317: *
        !           318: *        Estimate sep(T11,T22).
        !           319: *
        !           320:          EST = ZERO
        !           321:          KASE = 0
        !           322:    30    CONTINUE
        !           323:          CALL ZLACN2( NN, WORK( NN+1 ), WORK, EST, KASE, ISAVE )
        !           324:          IF( KASE.NE.0 ) THEN
        !           325:             IF( KASE.EQ.1 ) THEN
        !           326: *
        !           327: *              Solve T11*R - R*T22 = scale*X.
        !           328: *
        !           329:                CALL ZTRSYL( 'N', 'N', -1, N1, N2, T, LDT,
        !           330:      $                      T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
        !           331:      $                      IERR )
        !           332:             ELSE
        !           333: *
        !           334: *              Solve T11'*R - R*T22' = scale*X.
        !           335: *
        !           336:                CALL ZTRSYL( 'C', 'C', -1, N1, N2, T, LDT,
        !           337:      $                      T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
        !           338:      $                      IERR )
        !           339:             END IF
        !           340:             GO TO 30
        !           341:          END IF
        !           342: *
        !           343:          SEP = SCALE / EST
        !           344:       END IF
        !           345: *
        !           346:    40 CONTINUE
        !           347: *
        !           348: *     Copy reordered eigenvalues to W.
        !           349: *
        !           350:       DO 50 K = 1, N
        !           351:          W( K ) = T( K, K )
        !           352:    50 CONTINUE
        !           353: *
        !           354:       WORK( 1 ) = LWMIN
        !           355: *
        !           356:       RETURN
        !           357: *
        !           358: *     End of ZTRSEN
        !           359: *
        !           360:       END

CVSweb interface <joel.bertrand@systella.fr>