File:  [local] / rpl / lapack / lapack / ztrrfs.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Fri Aug 6 15:29:02 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Cohérence

    1:       SUBROUTINE ZTRRFS( UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, X,
    2:      $                   LDX, FERR, BERR, WORK, RWORK, INFO )
    3: *
    4: *  -- LAPACK routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH.
   10: *
   11: *     .. Scalar Arguments ..
   12:       CHARACTER          DIAG, TRANS, UPLO
   13:       INTEGER            INFO, LDA, LDB, LDX, N, NRHS
   14: *     ..
   15: *     .. Array Arguments ..
   16:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
   17:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * ),
   18:      $                   X( LDX, * )
   19: *     ..
   20: *
   21: *  Purpose
   22: *  =======
   23: *
   24: *  ZTRRFS provides error bounds and backward error estimates for the
   25: *  solution to a system of linear equations with a triangular
   26: *  coefficient matrix.
   27: *
   28: *  The solution matrix X must be computed by ZTRTRS or some other
   29: *  means before entering this routine.  ZTRRFS does not do iterative
   30: *  refinement because doing so cannot improve the backward error.
   31: *
   32: *  Arguments
   33: *  =========
   34: *
   35: *  UPLO    (input) CHARACTER*1
   36: *          = 'U':  A is upper triangular;
   37: *          = 'L':  A is lower triangular.
   38: *
   39: *  TRANS   (input) CHARACTER*1
   40: *          Specifies the form of the system of equations:
   41: *          = 'N':  A * X = B     (No transpose)
   42: *          = 'T':  A**T * X = B  (Transpose)
   43: *          = 'C':  A**H * X = B  (Conjugate transpose)
   44: *
   45: *  DIAG    (input) CHARACTER*1
   46: *          = 'N':  A is non-unit triangular;
   47: *          = 'U':  A is unit triangular.
   48: *
   49: *  N       (input) INTEGER
   50: *          The order of the matrix A.  N >= 0.
   51: *
   52: *  NRHS    (input) INTEGER
   53: *          The number of right hand sides, i.e., the number of columns
   54: *          of the matrices B and X.  NRHS >= 0.
   55: *
   56: *  A       (input) COMPLEX*16 array, dimension (LDA,N)
   57: *          The triangular matrix A.  If UPLO = 'U', the leading N-by-N
   58: *          upper triangular part of the array A contains the upper
   59: *          triangular matrix, and the strictly lower triangular part of
   60: *          A is not referenced.  If UPLO = 'L', the leading N-by-N lower
   61: *          triangular part of the array A contains the lower triangular
   62: *          matrix, and the strictly upper triangular part of A is not
   63: *          referenced.  If DIAG = 'U', the diagonal elements of A are
   64: *          also not referenced and are assumed to be 1.
   65: *
   66: *  LDA     (input) INTEGER
   67: *          The leading dimension of the array A.  LDA >= max(1,N).
   68: *
   69: *  B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
   70: *          The right hand side matrix B.
   71: *
   72: *  LDB     (input) INTEGER
   73: *          The leading dimension of the array B.  LDB >= max(1,N).
   74: *
   75: *  X       (input) COMPLEX*16 array, dimension (LDX,NRHS)
   76: *          The solution matrix X.
   77: *
   78: *  LDX     (input) INTEGER
   79: *          The leading dimension of the array X.  LDX >= max(1,N).
   80: *
   81: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
   82: *          The estimated forward error bound for each solution vector
   83: *          X(j) (the j-th column of the solution matrix X).
   84: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
   85: *          is an estimated upper bound for the magnitude of the largest
   86: *          element in (X(j) - XTRUE) divided by the magnitude of the
   87: *          largest element in X(j).  The estimate is as reliable as
   88: *          the estimate for RCOND, and is almost always a slight
   89: *          overestimate of the true error.
   90: *
   91: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
   92: *          The componentwise relative backward error of each solution
   93: *          vector X(j) (i.e., the smallest relative change in
   94: *          any element of A or B that makes X(j) an exact solution).
   95: *
   96: *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
   97: *
   98: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
   99: *
  100: *  INFO    (output) INTEGER
  101: *          = 0:  successful exit
  102: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  103: *
  104: *  =====================================================================
  105: *
  106: *     .. Parameters ..
  107:       DOUBLE PRECISION   ZERO
  108:       PARAMETER          ( ZERO = 0.0D+0 )
  109:       COMPLEX*16         ONE
  110:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
  111: *     ..
  112: *     .. Local Scalars ..
  113:       LOGICAL            NOTRAN, NOUNIT, UPPER
  114:       CHARACTER          TRANSN, TRANST
  115:       INTEGER            I, J, K, KASE, NZ
  116:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  117:       COMPLEX*16         ZDUM
  118: *     ..
  119: *     .. Local Arrays ..
  120:       INTEGER            ISAVE( 3 )
  121: *     ..
  122: *     .. External Subroutines ..
  123:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZLACN2, ZTRMV, ZTRSV
  124: *     ..
  125: *     .. Intrinsic Functions ..
  126:       INTRINSIC          ABS, DBLE, DIMAG, MAX
  127: *     ..
  128: *     .. External Functions ..
  129:       LOGICAL            LSAME
  130:       DOUBLE PRECISION   DLAMCH
  131:       EXTERNAL           LSAME, DLAMCH
  132: *     ..
  133: *     .. Statement Functions ..
  134:       DOUBLE PRECISION   CABS1
  135: *     ..
  136: *     .. Statement Function definitions ..
  137:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  138: *     ..
  139: *     .. Executable Statements ..
  140: *
  141: *     Test the input parameters.
  142: *
  143:       INFO = 0
  144:       UPPER = LSAME( UPLO, 'U' )
  145:       NOTRAN = LSAME( TRANS, 'N' )
  146:       NOUNIT = LSAME( DIAG, 'N' )
  147: *
  148:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  149:          INFO = -1
  150:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  151:      $         LSAME( TRANS, 'C' ) ) THEN
  152:          INFO = -2
  153:       ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  154:          INFO = -3
  155:       ELSE IF( N.LT.0 ) THEN
  156:          INFO = -4
  157:       ELSE IF( NRHS.LT.0 ) THEN
  158:          INFO = -5
  159:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  160:          INFO = -7
  161:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  162:          INFO = -9
  163:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  164:          INFO = -11
  165:       END IF
  166:       IF( INFO.NE.0 ) THEN
  167:          CALL XERBLA( 'ZTRRFS', -INFO )
  168:          RETURN
  169:       END IF
  170: *
  171: *     Quick return if possible
  172: *
  173:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  174:          DO 10 J = 1, NRHS
  175:             FERR( J ) = ZERO
  176:             BERR( J ) = ZERO
  177:    10    CONTINUE
  178:          RETURN
  179:       END IF
  180: *
  181:       IF( NOTRAN ) THEN
  182:          TRANSN = 'N'
  183:          TRANST = 'C'
  184:       ELSE
  185:          TRANSN = 'C'
  186:          TRANST = 'N'
  187:       END IF
  188: *
  189: *     NZ = maximum number of nonzero elements in each row of A, plus 1
  190: *
  191:       NZ = N + 1
  192:       EPS = DLAMCH( 'Epsilon' )
  193:       SAFMIN = DLAMCH( 'Safe minimum' )
  194:       SAFE1 = NZ*SAFMIN
  195:       SAFE2 = SAFE1 / EPS
  196: *
  197: *     Do for each right hand side
  198: *
  199:       DO 250 J = 1, NRHS
  200: *
  201: *        Compute residual R = B - op(A) * X,
  202: *        where op(A) = A, A**T, or A**H, depending on TRANS.
  203: *
  204:          CALL ZCOPY( N, X( 1, J ), 1, WORK, 1 )
  205:          CALL ZTRMV( UPLO, TRANS, DIAG, N, A, LDA, WORK, 1 )
  206:          CALL ZAXPY( N, -ONE, B( 1, J ), 1, WORK, 1 )
  207: *
  208: *        Compute componentwise relative backward error from formula
  209: *
  210: *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
  211: *
  212: *        where abs(Z) is the componentwise absolute value of the matrix
  213: *        or vector Z.  If the i-th component of the denominator is less
  214: *        than SAFE2, then SAFE1 is added to the i-th components of the
  215: *        numerator and denominator before dividing.
  216: *
  217:          DO 20 I = 1, N
  218:             RWORK( I ) = CABS1( B( I, J ) )
  219:    20    CONTINUE
  220: *
  221:          IF( NOTRAN ) THEN
  222: *
  223: *           Compute abs(A)*abs(X) + abs(B).
  224: *
  225:             IF( UPPER ) THEN
  226:                IF( NOUNIT ) THEN
  227:                   DO 40 K = 1, N
  228:                      XK = CABS1( X( K, J ) )
  229:                      DO 30 I = 1, K
  230:                         RWORK( I ) = RWORK( I ) + CABS1( A( I, K ) )*XK
  231:    30                CONTINUE
  232:    40             CONTINUE
  233:                ELSE
  234:                   DO 60 K = 1, N
  235:                      XK = CABS1( X( K, J ) )
  236:                      DO 50 I = 1, K - 1
  237:                         RWORK( I ) = RWORK( I ) + CABS1( A( I, K ) )*XK
  238:    50                CONTINUE
  239:                      RWORK( K ) = RWORK( K ) + XK
  240:    60             CONTINUE
  241:                END IF
  242:             ELSE
  243:                IF( NOUNIT ) THEN
  244:                   DO 80 K = 1, N
  245:                      XK = CABS1( X( K, J ) )
  246:                      DO 70 I = K, N
  247:                         RWORK( I ) = RWORK( I ) + CABS1( A( I, K ) )*XK
  248:    70                CONTINUE
  249:    80             CONTINUE
  250:                ELSE
  251:                   DO 100 K = 1, N
  252:                      XK = CABS1( X( K, J ) )
  253:                      DO 90 I = K + 1, N
  254:                         RWORK( I ) = RWORK( I ) + CABS1( A( I, K ) )*XK
  255:    90                CONTINUE
  256:                      RWORK( K ) = RWORK( K ) + XK
  257:   100             CONTINUE
  258:                END IF
  259:             END IF
  260:          ELSE
  261: *
  262: *           Compute abs(A**H)*abs(X) + abs(B).
  263: *
  264:             IF( UPPER ) THEN
  265:                IF( NOUNIT ) THEN
  266:                   DO 120 K = 1, N
  267:                      S = ZERO
  268:                      DO 110 I = 1, K
  269:                         S = S + CABS1( A( I, K ) )*CABS1( X( I, J ) )
  270:   110                CONTINUE
  271:                      RWORK( K ) = RWORK( K ) + S
  272:   120             CONTINUE
  273:                ELSE
  274:                   DO 140 K = 1, N
  275:                      S = CABS1( X( K, J ) )
  276:                      DO 130 I = 1, K - 1
  277:                         S = S + CABS1( A( I, K ) )*CABS1( X( I, J ) )
  278:   130                CONTINUE
  279:                      RWORK( K ) = RWORK( K ) + S
  280:   140             CONTINUE
  281:                END IF
  282:             ELSE
  283:                IF( NOUNIT ) THEN
  284:                   DO 160 K = 1, N
  285:                      S = ZERO
  286:                      DO 150 I = K, N
  287:                         S = S + CABS1( A( I, K ) )*CABS1( X( I, J ) )
  288:   150                CONTINUE
  289:                      RWORK( K ) = RWORK( K ) + S
  290:   160             CONTINUE
  291:                ELSE
  292:                   DO 180 K = 1, N
  293:                      S = CABS1( X( K, J ) )
  294:                      DO 170 I = K + 1, N
  295:                         S = S + CABS1( A( I, K ) )*CABS1( X( I, J ) )
  296:   170                CONTINUE
  297:                      RWORK( K ) = RWORK( K ) + S
  298:   180             CONTINUE
  299:                END IF
  300:             END IF
  301:          END IF
  302:          S = ZERO
  303:          DO 190 I = 1, N
  304:             IF( RWORK( I ).GT.SAFE2 ) THEN
  305:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
  306:             ELSE
  307:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
  308:      $             ( RWORK( I )+SAFE1 ) )
  309:             END IF
  310:   190    CONTINUE
  311:          BERR( J ) = S
  312: *
  313: *        Bound error from formula
  314: *
  315: *        norm(X - XTRUE) / norm(X) .le. FERR =
  316: *        norm( abs(inv(op(A)))*
  317: *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
  318: *
  319: *        where
  320: *          norm(Z) is the magnitude of the largest component of Z
  321: *          inv(op(A)) is the inverse of op(A)
  322: *          abs(Z) is the componentwise absolute value of the matrix or
  323: *             vector Z
  324: *          NZ is the maximum number of nonzeros in any row of A, plus 1
  325: *          EPS is machine epsilon
  326: *
  327: *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
  328: *        is incremented by SAFE1 if the i-th component of
  329: *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
  330: *
  331: *        Use ZLACN2 to estimate the infinity-norm of the matrix
  332: *           inv(op(A)) * diag(W),
  333: *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
  334: *
  335:          DO 200 I = 1, N
  336:             IF( RWORK( I ).GT.SAFE2 ) THEN
  337:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
  338:             ELSE
  339:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
  340:      $                      SAFE1
  341:             END IF
  342:   200    CONTINUE
  343: *
  344:          KASE = 0
  345:   210    CONTINUE
  346:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
  347:          IF( KASE.NE.0 ) THEN
  348:             IF( KASE.EQ.1 ) THEN
  349: *
  350: *              Multiply by diag(W)*inv(op(A)**H).
  351: *
  352:                CALL ZTRSV( UPLO, TRANST, DIAG, N, A, LDA, WORK, 1 )
  353:                DO 220 I = 1, N
  354:                   WORK( I ) = RWORK( I )*WORK( I )
  355:   220          CONTINUE
  356:             ELSE
  357: *
  358: *              Multiply by inv(op(A))*diag(W).
  359: *
  360:                DO 230 I = 1, N
  361:                   WORK( I ) = RWORK( I )*WORK( I )
  362:   230          CONTINUE
  363:                CALL ZTRSV( UPLO, TRANSN, DIAG, N, A, LDA, WORK, 1 )
  364:             END IF
  365:             GO TO 210
  366:          END IF
  367: *
  368: *        Normalize error.
  369: *
  370:          LSTRES = ZERO
  371:          DO 240 I = 1, N
  372:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
  373:   240    CONTINUE
  374:          IF( LSTRES.NE.ZERO )
  375:      $      FERR( J ) = FERR( J ) / LSTRES
  376: *
  377:   250 CONTINUE
  378: *
  379:       RETURN
  380: *
  381: *     End of ZTRRFS
  382: *
  383:       END

CVSweb interface <joel.bertrand@systella.fr>