File:  [local] / rpl / lapack / lapack / ztrrfs.f
Revision 1.17: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:42 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZTRRFS
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZTRRFS + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztrrfs.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztrrfs.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztrrfs.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZTRRFS( UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, X,
   22: *                          LDX, FERR, BERR, WORK, RWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          DIAG, TRANS, UPLO
   26: *       INTEGER            INFO, LDA, LDB, LDX, N, NRHS
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
   30: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * ),
   31: *      $                   X( LDX, * )
   32: *       ..
   33: *
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> ZTRRFS provides error bounds and backward error estimates for the
   41: *> solution to a system of linear equations with a triangular
   42: *> coefficient matrix.
   43: *>
   44: *> The solution matrix X must be computed by ZTRTRS or some other
   45: *> means before entering this routine.  ZTRRFS does not do iterative
   46: *> refinement because doing so cannot improve the backward error.
   47: *> \endverbatim
   48: *
   49: *  Arguments:
   50: *  ==========
   51: *
   52: *> \param[in] UPLO
   53: *> \verbatim
   54: *>          UPLO is CHARACTER*1
   55: *>          = 'U':  A is upper triangular;
   56: *>          = 'L':  A is lower triangular.
   57: *> \endverbatim
   58: *>
   59: *> \param[in] TRANS
   60: *> \verbatim
   61: *>          TRANS is CHARACTER*1
   62: *>          Specifies the form of the system of equations:
   63: *>          = 'N':  A * X = B     (No transpose)
   64: *>          = 'T':  A**T * X = B  (Transpose)
   65: *>          = 'C':  A**H * X = B  (Conjugate transpose)
   66: *> \endverbatim
   67: *>
   68: *> \param[in] DIAG
   69: *> \verbatim
   70: *>          DIAG is CHARACTER*1
   71: *>          = 'N':  A is non-unit triangular;
   72: *>          = 'U':  A is unit triangular.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] N
   76: *> \verbatim
   77: *>          N is INTEGER
   78: *>          The order of the matrix A.  N >= 0.
   79: *> \endverbatim
   80: *>
   81: *> \param[in] NRHS
   82: *> \verbatim
   83: *>          NRHS is INTEGER
   84: *>          The number of right hand sides, i.e., the number of columns
   85: *>          of the matrices B and X.  NRHS >= 0.
   86: *> \endverbatim
   87: *>
   88: *> \param[in] A
   89: *> \verbatim
   90: *>          A is COMPLEX*16 array, dimension (LDA,N)
   91: *>          The triangular matrix A.  If UPLO = 'U', the leading N-by-N
   92: *>          upper triangular part of the array A contains the upper
   93: *>          triangular matrix, and the strictly lower triangular part of
   94: *>          A is not referenced.  If UPLO = 'L', the leading N-by-N lower
   95: *>          triangular part of the array A contains the lower triangular
   96: *>          matrix, and the strictly upper triangular part of A is not
   97: *>          referenced.  If DIAG = 'U', the diagonal elements of A are
   98: *>          also not referenced and are assumed to be 1.
   99: *> \endverbatim
  100: *>
  101: *> \param[in] LDA
  102: *> \verbatim
  103: *>          LDA is INTEGER
  104: *>          The leading dimension of the array A.  LDA >= max(1,N).
  105: *> \endverbatim
  106: *>
  107: *> \param[in] B
  108: *> \verbatim
  109: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  110: *>          The right hand side matrix B.
  111: *> \endverbatim
  112: *>
  113: *> \param[in] LDB
  114: *> \verbatim
  115: *>          LDB is INTEGER
  116: *>          The leading dimension of the array B.  LDB >= max(1,N).
  117: *> \endverbatim
  118: *>
  119: *> \param[in] X
  120: *> \verbatim
  121: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
  122: *>          The solution matrix X.
  123: *> \endverbatim
  124: *>
  125: *> \param[in] LDX
  126: *> \verbatim
  127: *>          LDX is INTEGER
  128: *>          The leading dimension of the array X.  LDX >= max(1,N).
  129: *> \endverbatim
  130: *>
  131: *> \param[out] FERR
  132: *> \verbatim
  133: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
  134: *>          The estimated forward error bound for each solution vector
  135: *>          X(j) (the j-th column of the solution matrix X).
  136: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
  137: *>          is an estimated upper bound for the magnitude of the largest
  138: *>          element in (X(j) - XTRUE) divided by the magnitude of the
  139: *>          largest element in X(j).  The estimate is as reliable as
  140: *>          the estimate for RCOND, and is almost always a slight
  141: *>          overestimate of the true error.
  142: *> \endverbatim
  143: *>
  144: *> \param[out] BERR
  145: *> \verbatim
  146: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  147: *>          The componentwise relative backward error of each solution
  148: *>          vector X(j) (i.e., the smallest relative change in
  149: *>          any element of A or B that makes X(j) an exact solution).
  150: *> \endverbatim
  151: *>
  152: *> \param[out] WORK
  153: *> \verbatim
  154: *>          WORK is COMPLEX*16 array, dimension (2*N)
  155: *> \endverbatim
  156: *>
  157: *> \param[out] RWORK
  158: *> \verbatim
  159: *>          RWORK is DOUBLE PRECISION array, dimension (N)
  160: *> \endverbatim
  161: *>
  162: *> \param[out] INFO
  163: *> \verbatim
  164: *>          INFO is INTEGER
  165: *>          = 0:  successful exit
  166: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  167: *> \endverbatim
  168: *
  169: *  Authors:
  170: *  ========
  171: *
  172: *> \author Univ. of Tennessee
  173: *> \author Univ. of California Berkeley
  174: *> \author Univ. of Colorado Denver
  175: *> \author NAG Ltd.
  176: *
  177: *> \ingroup complex16OTHERcomputational
  178: *
  179: *  =====================================================================
  180:       SUBROUTINE ZTRRFS( UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, X,
  181:      $                   LDX, FERR, BERR, WORK, RWORK, INFO )
  182: *
  183: *  -- LAPACK computational routine --
  184: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  185: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  186: *
  187: *     .. Scalar Arguments ..
  188:       CHARACTER          DIAG, TRANS, UPLO
  189:       INTEGER            INFO, LDA, LDB, LDX, N, NRHS
  190: *     ..
  191: *     .. Array Arguments ..
  192:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
  193:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * ),
  194:      $                   X( LDX, * )
  195: *     ..
  196: *
  197: *  =====================================================================
  198: *
  199: *     .. Parameters ..
  200:       DOUBLE PRECISION   ZERO
  201:       PARAMETER          ( ZERO = 0.0D+0 )
  202:       COMPLEX*16         ONE
  203:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
  204: *     ..
  205: *     .. Local Scalars ..
  206:       LOGICAL            NOTRAN, NOUNIT, UPPER
  207:       CHARACTER          TRANSN, TRANST
  208:       INTEGER            I, J, K, KASE, NZ
  209:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  210:       COMPLEX*16         ZDUM
  211: *     ..
  212: *     .. Local Arrays ..
  213:       INTEGER            ISAVE( 3 )
  214: *     ..
  215: *     .. External Subroutines ..
  216:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZLACN2, ZTRMV, ZTRSV
  217: *     ..
  218: *     .. Intrinsic Functions ..
  219:       INTRINSIC          ABS, DBLE, DIMAG, MAX
  220: *     ..
  221: *     .. External Functions ..
  222:       LOGICAL            LSAME
  223:       DOUBLE PRECISION   DLAMCH
  224:       EXTERNAL           LSAME, DLAMCH
  225: *     ..
  226: *     .. Statement Functions ..
  227:       DOUBLE PRECISION   CABS1
  228: *     ..
  229: *     .. Statement Function definitions ..
  230:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  231: *     ..
  232: *     .. Executable Statements ..
  233: *
  234: *     Test the input parameters.
  235: *
  236:       INFO = 0
  237:       UPPER = LSAME( UPLO, 'U' )
  238:       NOTRAN = LSAME( TRANS, 'N' )
  239:       NOUNIT = LSAME( DIAG, 'N' )
  240: *
  241:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  242:          INFO = -1
  243:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  244:      $         LSAME( TRANS, 'C' ) ) THEN
  245:          INFO = -2
  246:       ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  247:          INFO = -3
  248:       ELSE IF( N.LT.0 ) THEN
  249:          INFO = -4
  250:       ELSE IF( NRHS.LT.0 ) THEN
  251:          INFO = -5
  252:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  253:          INFO = -7
  254:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  255:          INFO = -9
  256:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  257:          INFO = -11
  258:       END IF
  259:       IF( INFO.NE.0 ) THEN
  260:          CALL XERBLA( 'ZTRRFS', -INFO )
  261:          RETURN
  262:       END IF
  263: *
  264: *     Quick return if possible
  265: *
  266:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  267:          DO 10 J = 1, NRHS
  268:             FERR( J ) = ZERO
  269:             BERR( J ) = ZERO
  270:    10    CONTINUE
  271:          RETURN
  272:       END IF
  273: *
  274:       IF( NOTRAN ) THEN
  275:          TRANSN = 'N'
  276:          TRANST = 'C'
  277:       ELSE
  278:          TRANSN = 'C'
  279:          TRANST = 'N'
  280:       END IF
  281: *
  282: *     NZ = maximum number of nonzero elements in each row of A, plus 1
  283: *
  284:       NZ = N + 1
  285:       EPS = DLAMCH( 'Epsilon' )
  286:       SAFMIN = DLAMCH( 'Safe minimum' )
  287:       SAFE1 = NZ*SAFMIN
  288:       SAFE2 = SAFE1 / EPS
  289: *
  290: *     Do for each right hand side
  291: *
  292:       DO 250 J = 1, NRHS
  293: *
  294: *        Compute residual R = B - op(A) * X,
  295: *        where op(A) = A, A**T, or A**H, depending on TRANS.
  296: *
  297:          CALL ZCOPY( N, X( 1, J ), 1, WORK, 1 )
  298:          CALL ZTRMV( UPLO, TRANS, DIAG, N, A, LDA, WORK, 1 )
  299:          CALL ZAXPY( N, -ONE, B( 1, J ), 1, WORK, 1 )
  300: *
  301: *        Compute componentwise relative backward error from formula
  302: *
  303: *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
  304: *
  305: *        where abs(Z) is the componentwise absolute value of the matrix
  306: *        or vector Z.  If the i-th component of the denominator is less
  307: *        than SAFE2, then SAFE1 is added to the i-th components of the
  308: *        numerator and denominator before dividing.
  309: *
  310:          DO 20 I = 1, N
  311:             RWORK( I ) = CABS1( B( I, J ) )
  312:    20    CONTINUE
  313: *
  314:          IF( NOTRAN ) THEN
  315: *
  316: *           Compute abs(A)*abs(X) + abs(B).
  317: *
  318:             IF( UPPER ) THEN
  319:                IF( NOUNIT ) THEN
  320:                   DO 40 K = 1, N
  321:                      XK = CABS1( X( K, J ) )
  322:                      DO 30 I = 1, K
  323:                         RWORK( I ) = RWORK( I ) + CABS1( A( I, K ) )*XK
  324:    30                CONTINUE
  325:    40             CONTINUE
  326:                ELSE
  327:                   DO 60 K = 1, N
  328:                      XK = CABS1( X( K, J ) )
  329:                      DO 50 I = 1, K - 1
  330:                         RWORK( I ) = RWORK( I ) + CABS1( A( I, K ) )*XK
  331:    50                CONTINUE
  332:                      RWORK( K ) = RWORK( K ) + XK
  333:    60             CONTINUE
  334:                END IF
  335:             ELSE
  336:                IF( NOUNIT ) THEN
  337:                   DO 80 K = 1, N
  338:                      XK = CABS1( X( K, J ) )
  339:                      DO 70 I = K, N
  340:                         RWORK( I ) = RWORK( I ) + CABS1( A( I, K ) )*XK
  341:    70                CONTINUE
  342:    80             CONTINUE
  343:                ELSE
  344:                   DO 100 K = 1, N
  345:                      XK = CABS1( X( K, J ) )
  346:                      DO 90 I = K + 1, N
  347:                         RWORK( I ) = RWORK( I ) + CABS1( A( I, K ) )*XK
  348:    90                CONTINUE
  349:                      RWORK( K ) = RWORK( K ) + XK
  350:   100             CONTINUE
  351:                END IF
  352:             END IF
  353:          ELSE
  354: *
  355: *           Compute abs(A**H)*abs(X) + abs(B).
  356: *
  357:             IF( UPPER ) THEN
  358:                IF( NOUNIT ) THEN
  359:                   DO 120 K = 1, N
  360:                      S = ZERO
  361:                      DO 110 I = 1, K
  362:                         S = S + CABS1( A( I, K ) )*CABS1( X( I, J ) )
  363:   110                CONTINUE
  364:                      RWORK( K ) = RWORK( K ) + S
  365:   120             CONTINUE
  366:                ELSE
  367:                   DO 140 K = 1, N
  368:                      S = CABS1( X( K, J ) )
  369:                      DO 130 I = 1, K - 1
  370:                         S = S + CABS1( A( I, K ) )*CABS1( X( I, J ) )
  371:   130                CONTINUE
  372:                      RWORK( K ) = RWORK( K ) + S
  373:   140             CONTINUE
  374:                END IF
  375:             ELSE
  376:                IF( NOUNIT ) THEN
  377:                   DO 160 K = 1, N
  378:                      S = ZERO
  379:                      DO 150 I = K, N
  380:                         S = S + CABS1( A( I, K ) )*CABS1( X( I, J ) )
  381:   150                CONTINUE
  382:                      RWORK( K ) = RWORK( K ) + S
  383:   160             CONTINUE
  384:                ELSE
  385:                   DO 180 K = 1, N
  386:                      S = CABS1( X( K, J ) )
  387:                      DO 170 I = K + 1, N
  388:                         S = S + CABS1( A( I, K ) )*CABS1( X( I, J ) )
  389:   170                CONTINUE
  390:                      RWORK( K ) = RWORK( K ) + S
  391:   180             CONTINUE
  392:                END IF
  393:             END IF
  394:          END IF
  395:          S = ZERO
  396:          DO 190 I = 1, N
  397:             IF( RWORK( I ).GT.SAFE2 ) THEN
  398:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
  399:             ELSE
  400:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
  401:      $             ( RWORK( I )+SAFE1 ) )
  402:             END IF
  403:   190    CONTINUE
  404:          BERR( J ) = S
  405: *
  406: *        Bound error from formula
  407: *
  408: *        norm(X - XTRUE) / norm(X) .le. FERR =
  409: *        norm( abs(inv(op(A)))*
  410: *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
  411: *
  412: *        where
  413: *          norm(Z) is the magnitude of the largest component of Z
  414: *          inv(op(A)) is the inverse of op(A)
  415: *          abs(Z) is the componentwise absolute value of the matrix or
  416: *             vector Z
  417: *          NZ is the maximum number of nonzeros in any row of A, plus 1
  418: *          EPS is machine epsilon
  419: *
  420: *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
  421: *        is incremented by SAFE1 if the i-th component of
  422: *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
  423: *
  424: *        Use ZLACN2 to estimate the infinity-norm of the matrix
  425: *           inv(op(A)) * diag(W),
  426: *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
  427: *
  428:          DO 200 I = 1, N
  429:             IF( RWORK( I ).GT.SAFE2 ) THEN
  430:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
  431:             ELSE
  432:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
  433:      $                      SAFE1
  434:             END IF
  435:   200    CONTINUE
  436: *
  437:          KASE = 0
  438:   210    CONTINUE
  439:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
  440:          IF( KASE.NE.0 ) THEN
  441:             IF( KASE.EQ.1 ) THEN
  442: *
  443: *              Multiply by diag(W)*inv(op(A)**H).
  444: *
  445:                CALL ZTRSV( UPLO, TRANST, DIAG, N, A, LDA, WORK, 1 )
  446:                DO 220 I = 1, N
  447:                   WORK( I ) = RWORK( I )*WORK( I )
  448:   220          CONTINUE
  449:             ELSE
  450: *
  451: *              Multiply by inv(op(A))*diag(W).
  452: *
  453:                DO 230 I = 1, N
  454:                   WORK( I ) = RWORK( I )*WORK( I )
  455:   230          CONTINUE
  456:                CALL ZTRSV( UPLO, TRANSN, DIAG, N, A, LDA, WORK, 1 )
  457:             END IF
  458:             GO TO 210
  459:          END IF
  460: *
  461: *        Normalize error.
  462: *
  463:          LSTRES = ZERO
  464:          DO 240 I = 1, N
  465:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
  466:   240    CONTINUE
  467:          IF( LSTRES.NE.ZERO )
  468:      $      FERR( J ) = FERR( J ) / LSTRES
  469: *
  470:   250 CONTINUE
  471: *
  472:       RETURN
  473: *
  474: *     End of ZTRRFS
  475: *
  476:       END

CVSweb interface <joel.bertrand@systella.fr>