File:  [local] / rpl / lapack / lapack / ztrevc3.f
Revision 1.7: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:42 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZTREVC3
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZTREVC3 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztrevc3.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztrevc3.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztrevc3.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZTREVC3( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
   22: *      $                    LDVR, MM, M, WORK, LWORK, RWORK, LRWORK, INFO)
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          HOWMNY, SIDE
   26: *       INTEGER            INFO, LDT, LDVL, LDVR, LWORK, M, MM, N
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       LOGICAL            SELECT( * )
   30: *       DOUBLE PRECISION   RWORK( * )
   31: *       COMPLEX*16         T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
   32: *      $                   WORK( * )
   33: *       ..
   34: *
   35: *
   36: *> \par Purpose:
   37: *  =============
   38: *>
   39: *> \verbatim
   40: *>
   41: *> ZTREVC3 computes some or all of the right and/or left eigenvectors of
   42: *> a complex upper triangular matrix T.
   43: *> Matrices of this type are produced by the Schur factorization of
   44: *> a complex general matrix:  A = Q*T*Q**H, as computed by ZHSEQR.
   45: *>
   46: *> The right eigenvector x and the left eigenvector y of T corresponding
   47: *> to an eigenvalue w are defined by:
   48: *>
   49: *>              T*x = w*x,     (y**H)*T = w*(y**H)
   50: *>
   51: *> where y**H denotes the conjugate transpose of the vector y.
   52: *> The eigenvalues are not input to this routine, but are read directly
   53: *> from the diagonal of T.
   54: *>
   55: *> This routine returns the matrices X and/or Y of right and left
   56: *> eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an
   57: *> input matrix. If Q is the unitary factor that reduces a matrix A to
   58: *> Schur form T, then Q*X and Q*Y are the matrices of right and left
   59: *> eigenvectors of A.
   60: *>
   61: *> This uses a Level 3 BLAS version of the back transformation.
   62: *> \endverbatim
   63: *
   64: *  Arguments:
   65: *  ==========
   66: *
   67: *> \param[in] SIDE
   68: *> \verbatim
   69: *>          SIDE is CHARACTER*1
   70: *>          = 'R':  compute right eigenvectors only;
   71: *>          = 'L':  compute left eigenvectors only;
   72: *>          = 'B':  compute both right and left eigenvectors.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] HOWMNY
   76: *> \verbatim
   77: *>          HOWMNY is CHARACTER*1
   78: *>          = 'A':  compute all right and/or left eigenvectors;
   79: *>          = 'B':  compute all right and/or left eigenvectors,
   80: *>                  backtransformed using the matrices supplied in
   81: *>                  VR and/or VL;
   82: *>          = 'S':  compute selected right and/or left eigenvectors,
   83: *>                  as indicated by the logical array SELECT.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] SELECT
   87: *> \verbatim
   88: *>          SELECT is LOGICAL array, dimension (N)
   89: *>          If HOWMNY = 'S', SELECT specifies the eigenvectors to be
   90: *>          computed.
   91: *>          The eigenvector corresponding to the j-th eigenvalue is
   92: *>          computed if SELECT(j) = .TRUE..
   93: *>          Not referenced if HOWMNY = 'A' or 'B'.
   94: *> \endverbatim
   95: *>
   96: *> \param[in] N
   97: *> \verbatim
   98: *>          N is INTEGER
   99: *>          The order of the matrix T. N >= 0.
  100: *> \endverbatim
  101: *>
  102: *> \param[in,out] T
  103: *> \verbatim
  104: *>          T is COMPLEX*16 array, dimension (LDT,N)
  105: *>          The upper triangular matrix T.  T is modified, but restored
  106: *>          on exit.
  107: *> \endverbatim
  108: *>
  109: *> \param[in] LDT
  110: *> \verbatim
  111: *>          LDT is INTEGER
  112: *>          The leading dimension of the array T. LDT >= max(1,N).
  113: *> \endverbatim
  114: *>
  115: *> \param[in,out] VL
  116: *> \verbatim
  117: *>          VL is COMPLEX*16 array, dimension (LDVL,MM)
  118: *>          On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
  119: *>          contain an N-by-N matrix Q (usually the unitary matrix Q of
  120: *>          Schur vectors returned by ZHSEQR).
  121: *>          On exit, if SIDE = 'L' or 'B', VL contains:
  122: *>          if HOWMNY = 'A', the matrix Y of left eigenvectors of T;
  123: *>          if HOWMNY = 'B', the matrix Q*Y;
  124: *>          if HOWMNY = 'S', the left eigenvectors of T specified by
  125: *>                           SELECT, stored consecutively in the columns
  126: *>                           of VL, in the same order as their
  127: *>                           eigenvalues.
  128: *>          Not referenced if SIDE = 'R'.
  129: *> \endverbatim
  130: *>
  131: *> \param[in] LDVL
  132: *> \verbatim
  133: *>          LDVL is INTEGER
  134: *>          The leading dimension of the array VL.
  135: *>          LDVL >= 1, and if SIDE = 'L' or 'B', LDVL >= N.
  136: *> \endverbatim
  137: *>
  138: *> \param[in,out] VR
  139: *> \verbatim
  140: *>          VR is COMPLEX*16 array, dimension (LDVR,MM)
  141: *>          On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
  142: *>          contain an N-by-N matrix Q (usually the unitary matrix Q of
  143: *>          Schur vectors returned by ZHSEQR).
  144: *>          On exit, if SIDE = 'R' or 'B', VR contains:
  145: *>          if HOWMNY = 'A', the matrix X of right eigenvectors of T;
  146: *>          if HOWMNY = 'B', the matrix Q*X;
  147: *>          if HOWMNY = 'S', the right eigenvectors of T specified by
  148: *>                           SELECT, stored consecutively in the columns
  149: *>                           of VR, in the same order as their
  150: *>                           eigenvalues.
  151: *>          Not referenced if SIDE = 'L'.
  152: *> \endverbatim
  153: *>
  154: *> \param[in] LDVR
  155: *> \verbatim
  156: *>          LDVR is INTEGER
  157: *>          The leading dimension of the array VR.
  158: *>          LDVR >= 1, and if SIDE = 'R' or 'B', LDVR >= N.
  159: *> \endverbatim
  160: *>
  161: *> \param[in] MM
  162: *> \verbatim
  163: *>          MM is INTEGER
  164: *>          The number of columns in the arrays VL and/or VR. MM >= M.
  165: *> \endverbatim
  166: *>
  167: *> \param[out] M
  168: *> \verbatim
  169: *>          M is INTEGER
  170: *>          The number of columns in the arrays VL and/or VR actually
  171: *>          used to store the eigenvectors.
  172: *>          If HOWMNY = 'A' or 'B', M is set to N.
  173: *>          Each selected eigenvector occupies one column.
  174: *> \endverbatim
  175: *>
  176: *> \param[out] WORK
  177: *> \verbatim
  178: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  179: *> \endverbatim
  180: *>
  181: *> \param[in] LWORK
  182: *> \verbatim
  183: *>          LWORK is INTEGER
  184: *>          The dimension of array WORK. LWORK >= max(1,2*N).
  185: *>          For optimum performance, LWORK >= N + 2*N*NB, where NB is
  186: *>          the optimal blocksize.
  187: *>
  188: *>          If LWORK = -1, then a workspace query is assumed; the routine
  189: *>          only calculates the optimal size of the WORK array, returns
  190: *>          this value as the first entry of the WORK array, and no error
  191: *>          message related to LWORK is issued by XERBLA.
  192: *> \endverbatim
  193: *>
  194: *> \param[out] RWORK
  195: *> \verbatim
  196: *>          RWORK is DOUBLE PRECISION array, dimension (LRWORK)
  197: *> \endverbatim
  198: *>
  199: *> \param[in] LRWORK
  200: *> \verbatim
  201: *>          LRWORK is INTEGER
  202: *>          The dimension of array RWORK. LRWORK >= max(1,N).
  203: *>
  204: *>          If LRWORK = -1, then a workspace query is assumed; the routine
  205: *>          only calculates the optimal size of the RWORK array, returns
  206: *>          this value as the first entry of the RWORK array, and no error
  207: *>          message related to LRWORK is issued by XERBLA.
  208: *> \endverbatim
  209: *>
  210: *> \param[out] INFO
  211: *> \verbatim
  212: *>          INFO is INTEGER
  213: *>          = 0:  successful exit
  214: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  215: *> \endverbatim
  216: *
  217: *  Authors:
  218: *  ========
  219: *
  220: *> \author Univ. of Tennessee
  221: *> \author Univ. of California Berkeley
  222: *> \author Univ. of Colorado Denver
  223: *> \author NAG Ltd.
  224: *
  225: *> \ingroup complex16OTHERcomputational
  226: *
  227: *> \par Further Details:
  228: *  =====================
  229: *>
  230: *> \verbatim
  231: *>
  232: *>  The algorithm used in this program is basically backward (forward)
  233: *>  substitution, with scaling to make the the code robust against
  234: *>  possible overflow.
  235: *>
  236: *>  Each eigenvector is normalized so that the element of largest
  237: *>  magnitude has magnitude 1; here the magnitude of a complex number
  238: *>  (x,y) is taken to be |x| + |y|.
  239: *> \endverbatim
  240: *>
  241: *  =====================================================================
  242:       SUBROUTINE ZTREVC3( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
  243:      $                    LDVR, MM, M, WORK, LWORK, RWORK, LRWORK, INFO)
  244:       IMPLICIT NONE
  245: *
  246: *  -- LAPACK computational routine --
  247: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  248: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  249: *
  250: *     .. Scalar Arguments ..
  251:       CHARACTER          HOWMNY, SIDE
  252:       INTEGER            INFO, LDT, LDVL, LDVR, LWORK, LRWORK, M, MM, N
  253: *     ..
  254: *     .. Array Arguments ..
  255:       LOGICAL            SELECT( * )
  256:       DOUBLE PRECISION   RWORK( * )
  257:       COMPLEX*16         T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
  258:      $                   WORK( * )
  259: *     ..
  260: *
  261: *  =====================================================================
  262: *
  263: *     .. Parameters ..
  264:       DOUBLE PRECISION   ZERO, ONE
  265:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  266:       COMPLEX*16         CZERO, CONE
  267:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
  268:      $                     CONE  = ( 1.0D+0, 0.0D+0 ) )
  269:       INTEGER            NBMIN, NBMAX
  270:       PARAMETER          ( NBMIN = 8, NBMAX = 128 )
  271: *     ..
  272: *     .. Local Scalars ..
  273:       LOGICAL            ALLV, BOTHV, LEFTV, LQUERY, OVER, RIGHTV, SOMEV
  274:       INTEGER            I, II, IS, J, K, KI, IV, MAXWRK, NB
  275:       DOUBLE PRECISION   OVFL, REMAX, SCALE, SMIN, SMLNUM, ULP, UNFL
  276:       COMPLEX*16         CDUM
  277: *     ..
  278: *     .. External Functions ..
  279:       LOGICAL            LSAME
  280:       INTEGER            ILAENV, IZAMAX
  281:       DOUBLE PRECISION   DLAMCH, DZASUM
  282:       EXTERNAL           LSAME, ILAENV, IZAMAX, DLAMCH, DZASUM
  283: *     ..
  284: *     .. External Subroutines ..
  285:       EXTERNAL           XERBLA, ZCOPY, ZDSCAL, ZGEMV, ZLATRS,
  286:      $                   ZGEMM, DLABAD, ZLASET, ZLACPY
  287: *     ..
  288: *     .. Intrinsic Functions ..
  289:       INTRINSIC          ABS, DBLE, DCMPLX, CONJG, DIMAG, MAX
  290: *     ..
  291: *     .. Statement Functions ..
  292:       DOUBLE PRECISION   CABS1
  293: *     ..
  294: *     .. Statement Function definitions ..
  295:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
  296: *     ..
  297: *     .. Executable Statements ..
  298: *
  299: *     Decode and test the input parameters
  300: *
  301:       BOTHV  = LSAME( SIDE, 'B' )
  302:       RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV
  303:       LEFTV  = LSAME( SIDE, 'L' ) .OR. BOTHV
  304: *
  305:       ALLV  = LSAME( HOWMNY, 'A' )
  306:       OVER  = LSAME( HOWMNY, 'B' )
  307:       SOMEV = LSAME( HOWMNY, 'S' )
  308: *
  309: *     Set M to the number of columns required to store the selected
  310: *     eigenvectors.
  311: *
  312:       IF( SOMEV ) THEN
  313:          M = 0
  314:          DO 10 J = 1, N
  315:             IF( SELECT( J ) )
  316:      $         M = M + 1
  317:    10    CONTINUE
  318:       ELSE
  319:          M = N
  320:       END IF
  321: *
  322:       INFO = 0
  323:       NB = ILAENV( 1, 'ZTREVC', SIDE // HOWMNY, N, -1, -1, -1 )
  324:       MAXWRK = N + 2*N*NB
  325:       WORK(1) = MAXWRK
  326:       RWORK(1) = N
  327:       LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 )
  328:       IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
  329:          INFO = -1
  330:       ELSE IF( .NOT.ALLV .AND. .NOT.OVER .AND. .NOT.SOMEV ) THEN
  331:          INFO = -2
  332:       ELSE IF( N.LT.0 ) THEN
  333:          INFO = -4
  334:       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
  335:          INFO = -6
  336:       ELSE IF( LDVL.LT.1 .OR. ( LEFTV .AND. LDVL.LT.N ) ) THEN
  337:          INFO = -8
  338:       ELSE IF( LDVR.LT.1 .OR. ( RIGHTV .AND. LDVR.LT.N ) ) THEN
  339:          INFO = -10
  340:       ELSE IF( MM.LT.M ) THEN
  341:          INFO = -11
  342:       ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN
  343:          INFO = -14
  344:       ELSE IF ( LRWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
  345:          INFO = -16
  346:       END IF
  347:       IF( INFO.NE.0 ) THEN
  348:          CALL XERBLA( 'ZTREVC3', -INFO )
  349:          RETURN
  350:       ELSE IF( LQUERY ) THEN
  351:          RETURN
  352:       END IF
  353: *
  354: *     Quick return if possible.
  355: *
  356:       IF( N.EQ.0 )
  357:      $   RETURN
  358: *
  359: *     Use blocked version of back-transformation if sufficient workspace.
  360: *     Zero-out the workspace to avoid potential NaN propagation.
  361: *
  362:       IF( OVER .AND. LWORK .GE. N + 2*N*NBMIN ) THEN
  363:          NB = (LWORK - N) / (2*N)
  364:          NB = MIN( NB, NBMAX )
  365:          CALL ZLASET( 'F', N, 1+2*NB, CZERO, CZERO, WORK, N )
  366:       ELSE
  367:          NB = 1
  368:       END IF
  369: *
  370: *     Set the constants to control overflow.
  371: *
  372:       UNFL = DLAMCH( 'Safe minimum' )
  373:       OVFL = ONE / UNFL
  374:       CALL DLABAD( UNFL, OVFL )
  375:       ULP = DLAMCH( 'Precision' )
  376:       SMLNUM = UNFL*( N / ULP )
  377: *
  378: *     Store the diagonal elements of T in working array WORK.
  379: *
  380:       DO 20 I = 1, N
  381:          WORK( I ) = T( I, I )
  382:    20 CONTINUE
  383: *
  384: *     Compute 1-norm of each column of strictly upper triangular
  385: *     part of T to control overflow in triangular solver.
  386: *
  387:       RWORK( 1 ) = ZERO
  388:       DO 30 J = 2, N
  389:          RWORK( J ) = DZASUM( J-1, T( 1, J ), 1 )
  390:    30 CONTINUE
  391: *
  392:       IF( RIGHTV ) THEN
  393: *
  394: *        ============================================================
  395: *        Compute right eigenvectors.
  396: *
  397: *        IV is index of column in current block.
  398: *        Non-blocked version always uses IV=NB=1;
  399: *        blocked     version starts with IV=NB, goes down to 1.
  400: *        (Note the "0-th" column is used to store the original diagonal.)
  401:          IV = NB
  402:          IS = M
  403:          DO 80 KI = N, 1, -1
  404:             IF( SOMEV ) THEN
  405:                IF( .NOT.SELECT( KI ) )
  406:      $            GO TO 80
  407:             END IF
  408:             SMIN = MAX( ULP*( CABS1( T( KI, KI ) ) ), SMLNUM )
  409: *
  410: *           --------------------------------------------------------
  411: *           Complex right eigenvector
  412: *
  413:             WORK( KI + IV*N ) = CONE
  414: *
  415: *           Form right-hand side.
  416: *
  417:             DO 40 K = 1, KI - 1
  418:                WORK( K + IV*N ) = -T( K, KI )
  419:    40       CONTINUE
  420: *
  421: *           Solve upper triangular system:
  422: *           [ T(1:KI-1,1:KI-1) - T(KI,KI) ]*X = SCALE*WORK.
  423: *
  424:             DO 50 K = 1, KI - 1
  425:                T( K, K ) = T( K, K ) - T( KI, KI )
  426:                IF( CABS1( T( K, K ) ).LT.SMIN )
  427:      $            T( K, K ) = SMIN
  428:    50       CONTINUE
  429: *
  430:             IF( KI.GT.1 ) THEN
  431:                CALL ZLATRS( 'Upper', 'No transpose', 'Non-unit', 'Y',
  432:      $                      KI-1, T, LDT, WORK( 1 + IV*N ), SCALE,
  433:      $                      RWORK, INFO )
  434:                WORK( KI + IV*N ) = SCALE
  435:             END IF
  436: *
  437: *           Copy the vector x or Q*x to VR and normalize.
  438: *
  439:             IF( .NOT.OVER ) THEN
  440: *              ------------------------------
  441: *              no back-transform: copy x to VR and normalize.
  442:                CALL ZCOPY( KI, WORK( 1 + IV*N ), 1, VR( 1, IS ), 1 )
  443: *
  444:                II = IZAMAX( KI, VR( 1, IS ), 1 )
  445:                REMAX = ONE / CABS1( VR( II, IS ) )
  446:                CALL ZDSCAL( KI, REMAX, VR( 1, IS ), 1 )
  447: *
  448:                DO 60 K = KI + 1, N
  449:                   VR( K, IS ) = CZERO
  450:    60          CONTINUE
  451: *
  452:             ELSE IF( NB.EQ.1 ) THEN
  453: *              ------------------------------
  454: *              version 1: back-transform each vector with GEMV, Q*x.
  455:                IF( KI.GT.1 )
  456:      $            CALL ZGEMV( 'N', N, KI-1, CONE, VR, LDVR,
  457:      $                        WORK( 1 + IV*N ), 1, DCMPLX( SCALE ),
  458:      $                        VR( 1, KI ), 1 )
  459: *
  460:                II = IZAMAX( N, VR( 1, KI ), 1 )
  461:                REMAX = ONE / CABS1( VR( II, KI ) )
  462:                CALL ZDSCAL( N, REMAX, VR( 1, KI ), 1 )
  463: *
  464:             ELSE
  465: *              ------------------------------
  466: *              version 2: back-transform block of vectors with GEMM
  467: *              zero out below vector
  468:                DO K = KI + 1, N
  469:                   WORK( K + IV*N ) = CZERO
  470:                END DO
  471: *
  472: *              Columns IV:NB of work are valid vectors.
  473: *              When the number of vectors stored reaches NB,
  474: *              or if this was last vector, do the GEMM
  475:                IF( (IV.EQ.1) .OR. (KI.EQ.1) ) THEN
  476:                   CALL ZGEMM( 'N', 'N', N, NB-IV+1, KI+NB-IV, CONE,
  477:      $                        VR, LDVR,
  478:      $                        WORK( 1 + (IV)*N    ), N,
  479:      $                        CZERO,
  480:      $                        WORK( 1 + (NB+IV)*N ), N )
  481: *                 normalize vectors
  482:                   DO K = IV, NB
  483:                      II = IZAMAX( N, WORK( 1 + (NB+K)*N ), 1 )
  484:                      REMAX = ONE / CABS1( WORK( II + (NB+K)*N ) )
  485:                      CALL ZDSCAL( N, REMAX, WORK( 1 + (NB+K)*N ), 1 )
  486:                   END DO
  487:                   CALL ZLACPY( 'F', N, NB-IV+1,
  488:      $                         WORK( 1 + (NB+IV)*N ), N,
  489:      $                         VR( 1, KI ), LDVR )
  490:                   IV = NB
  491:                ELSE
  492:                   IV = IV - 1
  493:                END IF
  494:             END IF
  495: *
  496: *           Restore the original diagonal elements of T.
  497: *
  498:             DO 70 K = 1, KI - 1
  499:                T( K, K ) = WORK( K )
  500:    70       CONTINUE
  501: *
  502:             IS = IS - 1
  503:    80    CONTINUE
  504:       END IF
  505: *
  506:       IF( LEFTV ) THEN
  507: *
  508: *        ============================================================
  509: *        Compute left eigenvectors.
  510: *
  511: *        IV is index of column in current block.
  512: *        Non-blocked version always uses IV=1;
  513: *        blocked     version starts with IV=1, goes up to NB.
  514: *        (Note the "0-th" column is used to store the original diagonal.)
  515:          IV = 1
  516:          IS = 1
  517:          DO 130 KI = 1, N
  518: *
  519:             IF( SOMEV ) THEN
  520:                IF( .NOT.SELECT( KI ) )
  521:      $            GO TO 130
  522:             END IF
  523:             SMIN = MAX( ULP*( CABS1( T( KI, KI ) ) ), SMLNUM )
  524: *
  525: *           --------------------------------------------------------
  526: *           Complex left eigenvector
  527: *
  528:             WORK( KI + IV*N ) = CONE
  529: *
  530: *           Form right-hand side.
  531: *
  532:             DO 90 K = KI + 1, N
  533:                WORK( K + IV*N ) = -CONJG( T( KI, K ) )
  534:    90       CONTINUE
  535: *
  536: *           Solve conjugate-transposed triangular system:
  537: *           [ T(KI+1:N,KI+1:N) - T(KI,KI) ]**H * X = SCALE*WORK.
  538: *
  539:             DO 100 K = KI + 1, N
  540:                T( K, K ) = T( K, K ) - T( KI, KI )
  541:                IF( CABS1( T( K, K ) ).LT.SMIN )
  542:      $            T( K, K ) = SMIN
  543:   100       CONTINUE
  544: *
  545:             IF( KI.LT.N ) THEN
  546:                CALL ZLATRS( 'Upper', 'Conjugate transpose', 'Non-unit',
  547:      $                      'Y', N-KI, T( KI+1, KI+1 ), LDT,
  548:      $                      WORK( KI+1 + IV*N ), SCALE, RWORK, INFO )
  549:                WORK( KI + IV*N ) = SCALE
  550:             END IF
  551: *
  552: *           Copy the vector x or Q*x to VL and normalize.
  553: *
  554:             IF( .NOT.OVER ) THEN
  555: *              ------------------------------
  556: *              no back-transform: copy x to VL and normalize.
  557:                CALL ZCOPY( N-KI+1, WORK( KI + IV*N ), 1, VL(KI,IS), 1 )
  558: *
  559:                II = IZAMAX( N-KI+1, VL( KI, IS ), 1 ) + KI - 1
  560:                REMAX = ONE / CABS1( VL( II, IS ) )
  561:                CALL ZDSCAL( N-KI+1, REMAX, VL( KI, IS ), 1 )
  562: *
  563:                DO 110 K = 1, KI - 1
  564:                   VL( K, IS ) = CZERO
  565:   110          CONTINUE
  566: *
  567:             ELSE IF( NB.EQ.1 ) THEN
  568: *              ------------------------------
  569: *              version 1: back-transform each vector with GEMV, Q*x.
  570:                IF( KI.LT.N )
  571:      $            CALL ZGEMV( 'N', N, N-KI, CONE, VL( 1, KI+1 ), LDVL,
  572:      $                        WORK( KI+1 + IV*N ), 1, DCMPLX( SCALE ),
  573:      $                        VL( 1, KI ), 1 )
  574: *
  575:                II = IZAMAX( N, VL( 1, KI ), 1 )
  576:                REMAX = ONE / CABS1( VL( II, KI ) )
  577:                CALL ZDSCAL( N, REMAX, VL( 1, KI ), 1 )
  578: *
  579:             ELSE
  580: *              ------------------------------
  581: *              version 2: back-transform block of vectors with GEMM
  582: *              zero out above vector
  583: *              could go from KI-NV+1 to KI-1
  584:                DO K = 1, KI - 1
  585:                   WORK( K + IV*N ) = CZERO
  586:                END DO
  587: *
  588: *              Columns 1:IV of work are valid vectors.
  589: *              When the number of vectors stored reaches NB,
  590: *              or if this was last vector, do the GEMM
  591:                IF( (IV.EQ.NB) .OR. (KI.EQ.N) ) THEN
  592:                   CALL ZGEMM( 'N', 'N', N, IV, N-KI+IV, CONE,
  593:      $                        VL( 1, KI-IV+1 ), LDVL,
  594:      $                        WORK( KI-IV+1 + (1)*N ), N,
  595:      $                        CZERO,
  596:      $                        WORK( 1 + (NB+1)*N ), N )
  597: *                 normalize vectors
  598:                   DO K = 1, IV
  599:                      II = IZAMAX( N, WORK( 1 + (NB+K)*N ), 1 )
  600:                      REMAX = ONE / CABS1( WORK( II + (NB+K)*N ) )
  601:                      CALL ZDSCAL( N, REMAX, WORK( 1 + (NB+K)*N ), 1 )
  602:                   END DO
  603:                   CALL ZLACPY( 'F', N, IV,
  604:      $                         WORK( 1 + (NB+1)*N ), N,
  605:      $                         VL( 1, KI-IV+1 ), LDVL )
  606:                   IV = 1
  607:                ELSE
  608:                   IV = IV + 1
  609:                END IF
  610:             END IF
  611: *
  612: *           Restore the original diagonal elements of T.
  613: *
  614:             DO 120 K = KI + 1, N
  615:                T( K, K ) = WORK( K )
  616:   120       CONTINUE
  617: *
  618:             IS = IS + 1
  619:   130    CONTINUE
  620:       END IF
  621: *
  622:       RETURN
  623: *
  624: *     End of ZTREVC3
  625: *
  626:       END

CVSweb interface <joel.bertrand@systella.fr>