File:  [local] / rpl / lapack / lapack / ztrevc3.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Sat Aug 27 15:31:05 2016 UTC (7 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZTREVC3
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZTREVC3 + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztrevc3.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztrevc3.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztrevc3.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZTREVC3( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL,
   22: *                           VR, LDVR, MM, M, WORK, LWORK, RWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          HOWMNY, SIDE
   26: *       INTEGER            INFO, LDT, LDVL, LDVR, LWORK, M, MM, N
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       LOGICAL            SELECT( * )
   30: *       DOUBLE PRECISION   RWORK( * )
   31: *       COMPLEX*16         T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
   32: *      $                   WORK( * )
   33: *       ..
   34: *
   35: *
   36: *> \par Purpose:
   37: *  =============
   38: *>
   39: *> \verbatim
   40: *>
   41: *> ZTREVC3 computes some or all of the right and/or left eigenvectors of
   42: *> a complex upper triangular matrix T.
   43: *> Matrices of this type are produced by the Schur factorization of
   44: *> a complex general matrix:  A = Q*T*Q**H, as computed by ZHSEQR.
   45: *>
   46: *> The right eigenvector x and the left eigenvector y of T corresponding
   47: *> to an eigenvalue w are defined by:
   48: *>
   49: *>              T*x = w*x,     (y**H)*T = w*(y**H)
   50: *>
   51: *> where y**H denotes the conjugate transpose of the vector y.
   52: *> The eigenvalues are not input to this routine, but are read directly
   53: *> from the diagonal of T.
   54: *>
   55: *> This routine returns the matrices X and/or Y of right and left
   56: *> eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an
   57: *> input matrix. If Q is the unitary factor that reduces a matrix A to
   58: *> Schur form T, then Q*X and Q*Y are the matrices of right and left
   59: *> eigenvectors of A.
   60: *>
   61: *> This uses a Level 3 BLAS version of the back transformation.
   62: *> \endverbatim
   63: *
   64: *  Arguments:
   65: *  ==========
   66: *
   67: *> \param[in] SIDE
   68: *> \verbatim
   69: *>          SIDE is CHARACTER*1
   70: *>          = 'R':  compute right eigenvectors only;
   71: *>          = 'L':  compute left eigenvectors only;
   72: *>          = 'B':  compute both right and left eigenvectors.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] HOWMNY
   76: *> \verbatim
   77: *>          HOWMNY is CHARACTER*1
   78: *>          = 'A':  compute all right and/or left eigenvectors;
   79: *>          = 'B':  compute all right and/or left eigenvectors,
   80: *>                  backtransformed using the matrices supplied in
   81: *>                  VR and/or VL;
   82: *>          = 'S':  compute selected right and/or left eigenvectors,
   83: *>                  as indicated by the logical array SELECT.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] SELECT
   87: *> \verbatim
   88: *>          SELECT is LOGICAL array, dimension (N)
   89: *>          If HOWMNY = 'S', SELECT specifies the eigenvectors to be
   90: *>          computed.
   91: *>          The eigenvector corresponding to the j-th eigenvalue is
   92: *>          computed if SELECT(j) = .TRUE..
   93: *>          Not referenced if HOWMNY = 'A' or 'B'.
   94: *> \endverbatim
   95: *>
   96: *> \param[in] N
   97: *> \verbatim
   98: *>          N is INTEGER
   99: *>          The order of the matrix T. N >= 0.
  100: *> \endverbatim
  101: *>
  102: *> \param[in,out] T
  103: *> \verbatim
  104: *>          T is COMPLEX*16 array, dimension (LDT,N)
  105: *>          The upper triangular matrix T.  T is modified, but restored
  106: *>          on exit.
  107: *> \endverbatim
  108: *>
  109: *> \param[in] LDT
  110: *> \verbatim
  111: *>          LDT is INTEGER
  112: *>          The leading dimension of the array T. LDT >= max(1,N).
  113: *> \endverbatim
  114: *>
  115: *> \param[in,out] VL
  116: *> \verbatim
  117: *>          VL is COMPLEX*16 array, dimension (LDVL,MM)
  118: *>          On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
  119: *>          contain an N-by-N matrix Q (usually the unitary matrix Q of
  120: *>          Schur vectors returned by ZHSEQR).
  121: *>          On exit, if SIDE = 'L' or 'B', VL contains:
  122: *>          if HOWMNY = 'A', the matrix Y of left eigenvectors of T;
  123: *>          if HOWMNY = 'B', the matrix Q*Y;
  124: *>          if HOWMNY = 'S', the left eigenvectors of T specified by
  125: *>                           SELECT, stored consecutively in the columns
  126: *>                           of VL, in the same order as their
  127: *>                           eigenvalues.
  128: *>          Not referenced if SIDE = 'R'.
  129: *> \endverbatim
  130: *>
  131: *> \param[in] LDVL
  132: *> \verbatim
  133: *>          LDVL is INTEGER
  134: *>          The leading dimension of the array VL.
  135: *>          LDVL >= 1, and if SIDE = 'L' or 'B', LDVL >= N.
  136: *> \endverbatim
  137: *>
  138: *> \param[in,out] VR
  139: *> \verbatim
  140: *>          VR is COMPLEX*16 array, dimension (LDVR,MM)
  141: *>          On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
  142: *>          contain an N-by-N matrix Q (usually the unitary matrix Q of
  143: *>          Schur vectors returned by ZHSEQR).
  144: *>          On exit, if SIDE = 'R' or 'B', VR contains:
  145: *>          if HOWMNY = 'A', the matrix X of right eigenvectors of T;
  146: *>          if HOWMNY = 'B', the matrix Q*X;
  147: *>          if HOWMNY = 'S', the right eigenvectors of T specified by
  148: *>                           SELECT, stored consecutively in the columns
  149: *>                           of VR, in the same order as their
  150: *>                           eigenvalues.
  151: *>          Not referenced if SIDE = 'L'.
  152: *> \endverbatim
  153: *>
  154: *> \param[in] LDVR
  155: *> \verbatim
  156: *>          LDVR is INTEGER
  157: *>          The leading dimension of the array VR.
  158: *>          LDVR >= 1, and if SIDE = 'R' or 'B', LDVR >= N.
  159: *> \endverbatim
  160: *>
  161: *> \param[in] MM
  162: *> \verbatim
  163: *>          MM is INTEGER
  164: *>          The number of columns in the arrays VL and/or VR. MM >= M.
  165: *> \endverbatim
  166: *>
  167: *> \param[out] M
  168: *> \verbatim
  169: *>          M is INTEGER
  170: *>          The number of columns in the arrays VL and/or VR actually
  171: *>          used to store the eigenvectors.
  172: *>          If HOWMNY = 'A' or 'B', M is set to N.
  173: *>          Each selected eigenvector occupies one column.
  174: *> \endverbatim
  175: *>
  176: *> \param[out] WORK
  177: *> \verbatim
  178: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  179: *> \endverbatim
  180: *>
  181: *> \param[in] LWORK
  182: *> \verbatim
  183: *>          LWORK is INTEGER
  184: *>          The dimension of array WORK. LWORK >= max(1,2*N).
  185: *>          For optimum performance, LWORK >= N + 2*N*NB, where NB is
  186: *>          the optimal blocksize.
  187: *>
  188: *>          If LWORK = -1, then a workspace query is assumed; the routine
  189: *>          only calculates the optimal size of the WORK array, returns
  190: *>          this value as the first entry of the WORK array, and no error
  191: *>          message related to LWORK is issued by XERBLA.
  192: *> \endverbatim
  193: *>
  194: *> \param[out] RWORK
  195: *> \verbatim
  196: *>          RWORK is DOUBLE PRECISION array, dimension (LRWORK)
  197: *> \endverbatim
  198: *>
  199: *> \param[in] LRWORK
  200: *> \verbatim
  201: *>          LRWORK is INTEGER
  202: *>          The dimension of array RWORK. LRWORK >= max(1,N).
  203: *>
  204: *>          If LRWORK = -1, then a workspace query is assumed; the routine
  205: *>          only calculates the optimal size of the RWORK array, returns
  206: *>          this value as the first entry of the RWORK array, and no error
  207: *>          message related to LRWORK is issued by XERBLA.
  208: *> \endverbatim
  209: *>
  210: *> \param[out] INFO
  211: *> \verbatim
  212: *>          INFO is INTEGER
  213: *>          = 0:  successful exit
  214: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  215: *> \endverbatim
  216: *
  217: *  Authors:
  218: *  ========
  219: *
  220: *> \author Univ. of Tennessee
  221: *> \author Univ. of California Berkeley
  222: *> \author Univ. of Colorado Denver
  223: *> \author NAG Ltd.
  224: *
  225: *> \date November 2011
  226: *
  227: *  @precisions fortran z -> c
  228: *
  229: *> \ingroup complex16OTHERcomputational
  230: *
  231: *> \par Further Details:
  232: *  =====================
  233: *>
  234: *> \verbatim
  235: *>
  236: *>  The algorithm used in this program is basically backward (forward)
  237: *>  substitution, with scaling to make the the code robust against
  238: *>  possible overflow.
  239: *>
  240: *>  Each eigenvector is normalized so that the element of largest
  241: *>  magnitude has magnitude 1; here the magnitude of a complex number
  242: *>  (x,y) is taken to be |x| + |y|.
  243: *> \endverbatim
  244: *>
  245: *  =====================================================================
  246:       SUBROUTINE ZTREVC3( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
  247:      $                    LDVR, MM, M, WORK, LWORK, RWORK, LRWORK, INFO)
  248:       IMPLICIT NONE
  249: *
  250: *  -- LAPACK computational routine (version 3.4.0) --
  251: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  252: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  253: *     November 2011
  254: *
  255: *     .. Scalar Arguments ..
  256:       CHARACTER          HOWMNY, SIDE
  257:       INTEGER            INFO, LDT, LDVL, LDVR, LWORK, LRWORK, M, MM, N
  258: *     ..
  259: *     .. Array Arguments ..
  260:       LOGICAL            SELECT( * )
  261:       DOUBLE PRECISION   RWORK( * )
  262:       COMPLEX*16         T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
  263:      $                   WORK( * )
  264: *     ..
  265: *
  266: *  =====================================================================
  267: *
  268: *     .. Parameters ..
  269:       DOUBLE PRECISION   ZERO, ONE
  270:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  271:       COMPLEX*16         CZERO, CONE
  272:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
  273:      $                     CONE  = ( 1.0D+0, 0.0D+0 ) )
  274:       INTEGER            NBMIN, NBMAX
  275:       PARAMETER          ( NBMIN = 8, NBMAX = 128 )
  276: *     ..
  277: *     .. Local Scalars ..
  278:       LOGICAL            ALLV, BOTHV, LEFTV, LQUERY, OVER, RIGHTV, SOMEV
  279:       INTEGER            I, II, IS, J, K, KI, IV, MAXWRK, NB
  280:       DOUBLE PRECISION   OVFL, REMAX, SCALE, SMIN, SMLNUM, ULP, UNFL
  281:       COMPLEX*16         CDUM
  282: *     ..
  283: *     .. External Functions ..
  284:       LOGICAL            LSAME
  285:       INTEGER            ILAENV, IZAMAX
  286:       DOUBLE PRECISION   DLAMCH, DZASUM
  287:       EXTERNAL           LSAME, ILAENV, IZAMAX, DLAMCH, DZASUM
  288: *     ..
  289: *     .. External Subroutines ..
  290:       EXTERNAL           XERBLA, ZCOPY, ZDSCAL, ZGEMV, ZLATRS
  291: *     ..
  292: *     .. Intrinsic Functions ..
  293:       INTRINSIC          ABS, DBLE, DCMPLX, CONJG, AIMAG, MAX
  294: *     ..
  295: *     .. Statement Functions ..
  296:       DOUBLE PRECISION   CABS1
  297: *     ..
  298: *     .. Statement Function definitions ..
  299:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( AIMAG( CDUM ) )
  300: *     ..
  301: *     .. Executable Statements ..
  302: *
  303: *     Decode and test the input parameters
  304: *
  305:       BOTHV  = LSAME( SIDE, 'B' )
  306:       RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV
  307:       LEFTV  = LSAME( SIDE, 'L' ) .OR. BOTHV
  308: *
  309:       ALLV  = LSAME( HOWMNY, 'A' )
  310:       OVER  = LSAME( HOWMNY, 'B' )
  311:       SOMEV = LSAME( HOWMNY, 'S' )
  312: *
  313: *     Set M to the number of columns required to store the selected
  314: *     eigenvectors.
  315: *
  316:       IF( SOMEV ) THEN
  317:          M = 0
  318:          DO 10 J = 1, N
  319:             IF( SELECT( J ) )
  320:      $         M = M + 1
  321:    10    CONTINUE
  322:       ELSE
  323:          M = N
  324:       END IF
  325: *
  326:       INFO = 0
  327:       NB = ILAENV( 1, 'ZTREVC', SIDE // HOWMNY, N, -1, -1, -1 )
  328:       MAXWRK = N + 2*N*NB
  329:       WORK(1) = MAXWRK
  330:       RWORK(1) = N
  331:       LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 )
  332:       IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
  333:          INFO = -1
  334:       ELSE IF( .NOT.ALLV .AND. .NOT.OVER .AND. .NOT.SOMEV ) THEN
  335:          INFO = -2
  336:       ELSE IF( N.LT.0 ) THEN
  337:          INFO = -4
  338:       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
  339:          INFO = -6
  340:       ELSE IF( LDVL.LT.1 .OR. ( LEFTV .AND. LDVL.LT.N ) ) THEN
  341:          INFO = -8
  342:       ELSE IF( LDVR.LT.1 .OR. ( RIGHTV .AND. LDVR.LT.N ) ) THEN
  343:          INFO = -10
  344:       ELSE IF( MM.LT.M ) THEN
  345:          INFO = -11
  346:       ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN
  347:          INFO = -14
  348:       ELSE IF ( LRWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
  349:          INFO = -16
  350:       END IF
  351:       IF( INFO.NE.0 ) THEN
  352:          CALL XERBLA( 'ZTREVC3', -INFO )
  353:          RETURN
  354:       ELSE IF( LQUERY ) THEN
  355:          RETURN
  356:       END IF
  357: *
  358: *     Quick return if possible.
  359: *
  360:       IF( N.EQ.0 )
  361:      $   RETURN
  362: *
  363: *     Use blocked version of back-transformation if sufficient workspace.
  364: *     Zero-out the workspace to avoid potential NaN propagation.
  365: *
  366:       IF( OVER .AND. LWORK .GE. N + 2*N*NBMIN ) THEN
  367:          NB = (LWORK - N) / (2*N)
  368:          NB = MIN( NB, NBMAX )
  369:          CALL ZLASET( 'F', N, 1+2*NB, CZERO, CZERO, WORK, N )
  370:       ELSE
  371:          NB = 1
  372:       END IF
  373: *
  374: *     Set the constants to control overflow.
  375: *
  376:       UNFL = DLAMCH( 'Safe minimum' )
  377:       OVFL = ONE / UNFL
  378:       CALL DLABAD( UNFL, OVFL )
  379:       ULP = DLAMCH( 'Precision' )
  380:       SMLNUM = UNFL*( N / ULP )
  381: *
  382: *     Store the diagonal elements of T in working array WORK.
  383: *
  384:       DO 20 I = 1, N
  385:          WORK( I ) = T( I, I )
  386:    20 CONTINUE
  387: *
  388: *     Compute 1-norm of each column of strictly upper triangular
  389: *     part of T to control overflow in triangular solver.
  390: *
  391:       RWORK( 1 ) = ZERO
  392:       DO 30 J = 2, N
  393:          RWORK( J ) = DZASUM( J-1, T( 1, J ), 1 )
  394:    30 CONTINUE
  395: *
  396:       IF( RIGHTV ) THEN
  397: *
  398: *        ============================================================
  399: *        Compute right eigenvectors.
  400: *
  401: *        IV is index of column in current block.
  402: *        Non-blocked version always uses IV=NB=1;
  403: *        blocked     version starts with IV=NB, goes down to 1.
  404: *        (Note the "0-th" column is used to store the original diagonal.)
  405:          IV = NB
  406:          IS = M
  407:          DO 80 KI = N, 1, -1
  408:             IF( SOMEV ) THEN
  409:                IF( .NOT.SELECT( KI ) )
  410:      $            GO TO 80
  411:             END IF
  412:             SMIN = MAX( ULP*( CABS1( T( KI, KI ) ) ), SMLNUM )
  413: *
  414: *           --------------------------------------------------------
  415: *           Complex right eigenvector
  416: *
  417:             WORK( KI + IV*N ) = CONE
  418: *
  419: *           Form right-hand side.
  420: *
  421:             DO 40 K = 1, KI - 1
  422:                WORK( K + IV*N ) = -T( K, KI )
  423:    40       CONTINUE
  424: *
  425: *           Solve upper triangular system:
  426: *           [ T(1:KI-1,1:KI-1) - T(KI,KI) ]*X = SCALE*WORK.
  427: *
  428:             DO 50 K = 1, KI - 1
  429:                T( K, K ) = T( K, K ) - T( KI, KI )
  430:                IF( CABS1( T( K, K ) ).LT.SMIN )
  431:      $            T( K, K ) = SMIN
  432:    50       CONTINUE
  433: *
  434:             IF( KI.GT.1 ) THEN
  435:                CALL ZLATRS( 'Upper', 'No transpose', 'Non-unit', 'Y',
  436:      $                      KI-1, T, LDT, WORK( 1 + IV*N ), SCALE,
  437:      $                      RWORK, INFO )
  438:                WORK( KI + IV*N ) = SCALE
  439:             END IF
  440: *
  441: *           Copy the vector x or Q*x to VR and normalize.
  442: *
  443:             IF( .NOT.OVER ) THEN
  444: *              ------------------------------
  445: *              no back-transform: copy x to VR and normalize.
  446:                CALL ZCOPY( KI, WORK( 1 + IV*N ), 1, VR( 1, IS ), 1 )
  447: *
  448:                II = IZAMAX( KI, VR( 1, IS ), 1 )
  449:                REMAX = ONE / CABS1( VR( II, IS ) )
  450:                CALL ZDSCAL( KI, REMAX, VR( 1, IS ), 1 )
  451: *
  452:                DO 60 K = KI + 1, N
  453:                   VR( K, IS ) = CZERO
  454:    60          CONTINUE
  455: *
  456:             ELSE IF( NB.EQ.1 ) THEN
  457: *              ------------------------------
  458: *              version 1: back-transform each vector with GEMV, Q*x.
  459:                IF( KI.GT.1 )
  460:      $            CALL ZGEMV( 'N', N, KI-1, CONE, VR, LDVR,
  461:      $                        WORK( 1 + IV*N ), 1, DCMPLX( SCALE ),
  462:      $                        VR( 1, KI ), 1 )
  463: *
  464:                II = IZAMAX( N, VR( 1, KI ), 1 )
  465:                REMAX = ONE / CABS1( VR( II, KI ) )
  466:                CALL ZDSCAL( N, REMAX, VR( 1, KI ), 1 )
  467: *
  468:             ELSE
  469: *              ------------------------------
  470: *              version 2: back-transform block of vectors with GEMM
  471: *              zero out below vector
  472:                DO K = KI + 1, N
  473:                   WORK( K + IV*N ) = CZERO
  474:                END DO
  475: *
  476: *              Columns IV:NB of work are valid vectors.
  477: *              When the number of vectors stored reaches NB,
  478: *              or if this was last vector, do the GEMM
  479:                IF( (IV.EQ.1) .OR. (KI.EQ.1) ) THEN
  480:                   CALL ZGEMM( 'N', 'N', N, NB-IV+1, KI+NB-IV, CONE,
  481:      $                        VR, LDVR,
  482:      $                        WORK( 1 + (IV)*N    ), N,
  483:      $                        CZERO,
  484:      $                        WORK( 1 + (NB+IV)*N ), N )
  485: *                 normalize vectors
  486:                   DO K = IV, NB
  487:                      II = IZAMAX( N, WORK( 1 + (NB+K)*N ), 1 )
  488:                      REMAX = ONE / CABS1( WORK( II + (NB+K)*N ) )
  489:                      CALL ZDSCAL( N, REMAX, WORK( 1 + (NB+K)*N ), 1 )
  490:                   END DO
  491:                   CALL ZLACPY( 'F', N, NB-IV+1,
  492:      $                         WORK( 1 + (NB+IV)*N ), N,
  493:      $                         VR( 1, KI ), LDVR )
  494:                   IV = NB
  495:                ELSE
  496:                   IV = IV - 1
  497:                END IF
  498:             END IF
  499: *
  500: *           Restore the original diagonal elements of T.
  501: *
  502:             DO 70 K = 1, KI - 1
  503:                T( K, K ) = WORK( K )
  504:    70       CONTINUE
  505: *
  506:             IS = IS - 1
  507:    80    CONTINUE
  508:       END IF
  509: *
  510:       IF( LEFTV ) THEN
  511: *
  512: *        ============================================================
  513: *        Compute left eigenvectors.
  514: *
  515: *        IV is index of column in current block.
  516: *        Non-blocked version always uses IV=1;
  517: *        blocked     version starts with IV=1, goes up to NB.
  518: *        (Note the "0-th" column is used to store the original diagonal.)
  519:          IV = 1
  520:          IS = 1
  521:          DO 130 KI = 1, N
  522: *
  523:             IF( SOMEV ) THEN
  524:                IF( .NOT.SELECT( KI ) )
  525:      $            GO TO 130
  526:             END IF
  527:             SMIN = MAX( ULP*( CABS1( T( KI, KI ) ) ), SMLNUM )
  528: *
  529: *           --------------------------------------------------------
  530: *           Complex left eigenvector
  531: *
  532:             WORK( KI + IV*N ) = CONE
  533: *
  534: *           Form right-hand side.
  535: *
  536:             DO 90 K = KI + 1, N
  537:                WORK( K + IV*N ) = -CONJG( T( KI, K ) )
  538:    90       CONTINUE
  539: *
  540: *           Solve conjugate-transposed triangular system:
  541: *           [ T(KI+1:N,KI+1:N) - T(KI,KI) ]**H * X = SCALE*WORK.
  542: *
  543:             DO 100 K = KI + 1, N
  544:                T( K, K ) = T( K, K ) - T( KI, KI )
  545:                IF( CABS1( T( K, K ) ).LT.SMIN )
  546:      $            T( K, K ) = SMIN
  547:   100       CONTINUE
  548: *
  549:             IF( KI.LT.N ) THEN
  550:                CALL ZLATRS( 'Upper', 'Conjugate transpose', 'Non-unit',
  551:      $                      'Y', N-KI, T( KI+1, KI+1 ), LDT,
  552:      $                      WORK( KI+1 + IV*N ), SCALE, RWORK, INFO )
  553:                WORK( KI + IV*N ) = SCALE
  554:             END IF
  555: *
  556: *           Copy the vector x or Q*x to VL and normalize.
  557: *
  558:             IF( .NOT.OVER ) THEN
  559: *              ------------------------------
  560: *              no back-transform: copy x to VL and normalize.
  561:                CALL ZCOPY( N-KI+1, WORK( KI + IV*N ), 1, VL(KI,IS), 1 )
  562: *
  563:                II = IZAMAX( N-KI+1, VL( KI, IS ), 1 ) + KI - 1
  564:                REMAX = ONE / CABS1( VL( II, IS ) )
  565:                CALL ZDSCAL( N-KI+1, REMAX, VL( KI, IS ), 1 )
  566: *
  567:                DO 110 K = 1, KI - 1
  568:                   VL( K, IS ) = CZERO
  569:   110          CONTINUE
  570: *
  571:             ELSE IF( NB.EQ.1 ) THEN
  572: *              ------------------------------
  573: *              version 1: back-transform each vector with GEMV, Q*x.
  574:                IF( KI.LT.N )
  575:      $            CALL ZGEMV( 'N', N, N-KI, CONE, VL( 1, KI+1 ), LDVL,
  576:      $                        WORK( KI+1 + IV*N ), 1, DCMPLX( SCALE ),
  577:      $                        VL( 1, KI ), 1 )
  578: *
  579:                II = IZAMAX( N, VL( 1, KI ), 1 )
  580:                REMAX = ONE / CABS1( VL( II, KI ) )
  581:                CALL ZDSCAL( N, REMAX, VL( 1, KI ), 1 )
  582: *
  583:             ELSE
  584: *              ------------------------------
  585: *              version 2: back-transform block of vectors with GEMM
  586: *              zero out above vector
  587: *              could go from KI-NV+1 to KI-1
  588:                DO K = 1, KI - 1
  589:                   WORK( K + IV*N ) = CZERO
  590:                END DO
  591: *
  592: *              Columns 1:IV of work are valid vectors.
  593: *              When the number of vectors stored reaches NB,
  594: *              or if this was last vector, do the GEMM
  595:                IF( (IV.EQ.NB) .OR. (KI.EQ.N) ) THEN
  596:                   CALL ZGEMM( 'N', 'N', N, IV, N-KI+IV, ONE,
  597:      $                        VL( 1, KI-IV+1 ), LDVL,
  598:      $                        WORK( KI-IV+1 + (1)*N ), N,
  599:      $                        CZERO,
  600:      $                        WORK( 1 + (NB+1)*N ), N )
  601: *                 normalize vectors
  602:                   DO K = 1, IV
  603:                      II = IZAMAX( N, WORK( 1 + (NB+K)*N ), 1 )
  604:                      REMAX = ONE / CABS1( WORK( II + (NB+K)*N ) )
  605:                      CALL ZDSCAL( N, REMAX, WORK( 1 + (NB+K)*N ), 1 )
  606:                   END DO
  607:                   CALL ZLACPY( 'F', N, IV,
  608:      $                         WORK( 1 + (NB+1)*N ), N,
  609:      $                         VL( 1, KI-IV+1 ), LDVL )
  610:                   IV = 1
  611:                ELSE
  612:                   IV = IV + 1
  613:                END IF
  614:             END IF
  615: *
  616: *           Restore the original diagonal elements of T.
  617: *
  618:             DO 120 K = KI + 1, N
  619:                T( K, K ) = WORK( K )
  620:   120       CONTINUE
  621: *
  622:             IS = IS + 1
  623:   130    CONTINUE
  624:       END IF
  625: *
  626:       RETURN
  627: *
  628: *     End of ZTREVC3
  629: *
  630:       END

CVSweb interface <joel.bertrand@systella.fr>