Annotation of rpl/lapack/lapack/ztrevc3.f, revision 1.1

1.1     ! bertrand    1: *> \brief \b ZTREVC3
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZTREVC3 + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztrevc3.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztrevc3.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztrevc3.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZTREVC3( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL,
        !            22: *                           VR, LDVR, MM, M, WORK, LWORK, RWORK, INFO )
        !            23: *
        !            24: *       .. Scalar Arguments ..
        !            25: *       CHARACTER          HOWMNY, SIDE
        !            26: *       INTEGER            INFO, LDT, LDVL, LDVR, LWORK, M, MM, N
        !            27: *       ..
        !            28: *       .. Array Arguments ..
        !            29: *       LOGICAL            SELECT( * )
        !            30: *       DOUBLE PRECISION   RWORK( * )
        !            31: *       COMPLEX*16         T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
        !            32: *      $                   WORK( * )
        !            33: *       ..
        !            34: *
        !            35: *
        !            36: *> \par Purpose:
        !            37: *  =============
        !            38: *>
        !            39: *> \verbatim
        !            40: *>
        !            41: *> ZTREVC3 computes some or all of the right and/or left eigenvectors of
        !            42: *> a complex upper triangular matrix T.
        !            43: *> Matrices of this type are produced by the Schur factorization of
        !            44: *> a complex general matrix:  A = Q*T*Q**H, as computed by ZHSEQR.
        !            45: *>
        !            46: *> The right eigenvector x and the left eigenvector y of T corresponding
        !            47: *> to an eigenvalue w are defined by:
        !            48: *>
        !            49: *>              T*x = w*x,     (y**H)*T = w*(y**H)
        !            50: *>
        !            51: *> where y**H denotes the conjugate transpose of the vector y.
        !            52: *> The eigenvalues are not input to this routine, but are read directly
        !            53: *> from the diagonal of T.
        !            54: *>
        !            55: *> This routine returns the matrices X and/or Y of right and left
        !            56: *> eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an
        !            57: *> input matrix. If Q is the unitary factor that reduces a matrix A to
        !            58: *> Schur form T, then Q*X and Q*Y are the matrices of right and left
        !            59: *> eigenvectors of A.
        !            60: *>
        !            61: *> This uses a Level 3 BLAS version of the back transformation.
        !            62: *> \endverbatim
        !            63: *
        !            64: *  Arguments:
        !            65: *  ==========
        !            66: *
        !            67: *> \param[in] SIDE
        !            68: *> \verbatim
        !            69: *>          SIDE is CHARACTER*1
        !            70: *>          = 'R':  compute right eigenvectors only;
        !            71: *>          = 'L':  compute left eigenvectors only;
        !            72: *>          = 'B':  compute both right and left eigenvectors.
        !            73: *> \endverbatim
        !            74: *>
        !            75: *> \param[in] HOWMNY
        !            76: *> \verbatim
        !            77: *>          HOWMNY is CHARACTER*1
        !            78: *>          = 'A':  compute all right and/or left eigenvectors;
        !            79: *>          = 'B':  compute all right and/or left eigenvectors,
        !            80: *>                  backtransformed using the matrices supplied in
        !            81: *>                  VR and/or VL;
        !            82: *>          = 'S':  compute selected right and/or left eigenvectors,
        !            83: *>                  as indicated by the logical array SELECT.
        !            84: *> \endverbatim
        !            85: *>
        !            86: *> \param[in] SELECT
        !            87: *> \verbatim
        !            88: *>          SELECT is LOGICAL array, dimension (N)
        !            89: *>          If HOWMNY = 'S', SELECT specifies the eigenvectors to be
        !            90: *>          computed.
        !            91: *>          The eigenvector corresponding to the j-th eigenvalue is
        !            92: *>          computed if SELECT(j) = .TRUE..
        !            93: *>          Not referenced if HOWMNY = 'A' or 'B'.
        !            94: *> \endverbatim
        !            95: *>
        !            96: *> \param[in] N
        !            97: *> \verbatim
        !            98: *>          N is INTEGER
        !            99: *>          The order of the matrix T. N >= 0.
        !           100: *> \endverbatim
        !           101: *>
        !           102: *> \param[in,out] T
        !           103: *> \verbatim
        !           104: *>          T is COMPLEX*16 array, dimension (LDT,N)
        !           105: *>          The upper triangular matrix T.  T is modified, but restored
        !           106: *>          on exit.
        !           107: *> \endverbatim
        !           108: *>
        !           109: *> \param[in] LDT
        !           110: *> \verbatim
        !           111: *>          LDT is INTEGER
        !           112: *>          The leading dimension of the array T. LDT >= max(1,N).
        !           113: *> \endverbatim
        !           114: *>
        !           115: *> \param[in,out] VL
        !           116: *> \verbatim
        !           117: *>          VL is COMPLEX*16 array, dimension (LDVL,MM)
        !           118: *>          On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
        !           119: *>          contain an N-by-N matrix Q (usually the unitary matrix Q of
        !           120: *>          Schur vectors returned by ZHSEQR).
        !           121: *>          On exit, if SIDE = 'L' or 'B', VL contains:
        !           122: *>          if HOWMNY = 'A', the matrix Y of left eigenvectors of T;
        !           123: *>          if HOWMNY = 'B', the matrix Q*Y;
        !           124: *>          if HOWMNY = 'S', the left eigenvectors of T specified by
        !           125: *>                           SELECT, stored consecutively in the columns
        !           126: *>                           of VL, in the same order as their
        !           127: *>                           eigenvalues.
        !           128: *>          Not referenced if SIDE = 'R'.
        !           129: *> \endverbatim
        !           130: *>
        !           131: *> \param[in] LDVL
        !           132: *> \verbatim
        !           133: *>          LDVL is INTEGER
        !           134: *>          The leading dimension of the array VL.
        !           135: *>          LDVL >= 1, and if SIDE = 'L' or 'B', LDVL >= N.
        !           136: *> \endverbatim
        !           137: *>
        !           138: *> \param[in,out] VR
        !           139: *> \verbatim
        !           140: *>          VR is COMPLEX*16 array, dimension (LDVR,MM)
        !           141: *>          On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
        !           142: *>          contain an N-by-N matrix Q (usually the unitary matrix Q of
        !           143: *>          Schur vectors returned by ZHSEQR).
        !           144: *>          On exit, if SIDE = 'R' or 'B', VR contains:
        !           145: *>          if HOWMNY = 'A', the matrix X of right eigenvectors of T;
        !           146: *>          if HOWMNY = 'B', the matrix Q*X;
        !           147: *>          if HOWMNY = 'S', the right eigenvectors of T specified by
        !           148: *>                           SELECT, stored consecutively in the columns
        !           149: *>                           of VR, in the same order as their
        !           150: *>                           eigenvalues.
        !           151: *>          Not referenced if SIDE = 'L'.
        !           152: *> \endverbatim
        !           153: *>
        !           154: *> \param[in] LDVR
        !           155: *> \verbatim
        !           156: *>          LDVR is INTEGER
        !           157: *>          The leading dimension of the array VR.
        !           158: *>          LDVR >= 1, and if SIDE = 'R' or 'B', LDVR >= N.
        !           159: *> \endverbatim
        !           160: *>
        !           161: *> \param[in] MM
        !           162: *> \verbatim
        !           163: *>          MM is INTEGER
        !           164: *>          The number of columns in the arrays VL and/or VR. MM >= M.
        !           165: *> \endverbatim
        !           166: *>
        !           167: *> \param[out] M
        !           168: *> \verbatim
        !           169: *>          M is INTEGER
        !           170: *>          The number of columns in the arrays VL and/or VR actually
        !           171: *>          used to store the eigenvectors.
        !           172: *>          If HOWMNY = 'A' or 'B', M is set to N.
        !           173: *>          Each selected eigenvector occupies one column.
        !           174: *> \endverbatim
        !           175: *>
        !           176: *> \param[out] WORK
        !           177: *> \verbatim
        !           178: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           179: *> \endverbatim
        !           180: *>
        !           181: *> \param[in] LWORK
        !           182: *> \verbatim
        !           183: *>          LWORK is INTEGER
        !           184: *>          The dimension of array WORK. LWORK >= max(1,2*N).
        !           185: *>          For optimum performance, LWORK >= N + 2*N*NB, where NB is
        !           186: *>          the optimal blocksize.
        !           187: *>
        !           188: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           189: *>          only calculates the optimal size of the WORK array, returns
        !           190: *>          this value as the first entry of the WORK array, and no error
        !           191: *>          message related to LWORK is issued by XERBLA.
        !           192: *> \endverbatim
        !           193: *>
        !           194: *> \param[out] RWORK
        !           195: *> \verbatim
        !           196: *>          RWORK is DOUBLE PRECISION array, dimension (LRWORK)
        !           197: *> \endverbatim
        !           198: *>
        !           199: *> \param[in] LRWORK
        !           200: *> \verbatim
        !           201: *>          LRWORK is INTEGER
        !           202: *>          The dimension of array RWORK. LRWORK >= max(1,N).
        !           203: *>
        !           204: *>          If LRWORK = -1, then a workspace query is assumed; the routine
        !           205: *>          only calculates the optimal size of the RWORK array, returns
        !           206: *>          this value as the first entry of the RWORK array, and no error
        !           207: *>          message related to LRWORK is issued by XERBLA.
        !           208: *> \endverbatim
        !           209: *>
        !           210: *> \param[out] INFO
        !           211: *> \verbatim
        !           212: *>          INFO is INTEGER
        !           213: *>          = 0:  successful exit
        !           214: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           215: *> \endverbatim
        !           216: *
        !           217: *  Authors:
        !           218: *  ========
        !           219: *
        !           220: *> \author Univ. of Tennessee
        !           221: *> \author Univ. of California Berkeley
        !           222: *> \author Univ. of Colorado Denver
        !           223: *> \author NAG Ltd.
        !           224: *
        !           225: *> \date November 2011
        !           226: *
        !           227: *  @precisions fortran z -> c
        !           228: *
        !           229: *> \ingroup complex16OTHERcomputational
        !           230: *
        !           231: *> \par Further Details:
        !           232: *  =====================
        !           233: *>
        !           234: *> \verbatim
        !           235: *>
        !           236: *>  The algorithm used in this program is basically backward (forward)
        !           237: *>  substitution, with scaling to make the the code robust against
        !           238: *>  possible overflow.
        !           239: *>
        !           240: *>  Each eigenvector is normalized so that the element of largest
        !           241: *>  magnitude has magnitude 1; here the magnitude of a complex number
        !           242: *>  (x,y) is taken to be |x| + |y|.
        !           243: *> \endverbatim
        !           244: *>
        !           245: *  =====================================================================
        !           246:       SUBROUTINE ZTREVC3( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
        !           247:      $                    LDVR, MM, M, WORK, LWORK, RWORK, LRWORK, INFO)
        !           248:       IMPLICIT NONE
        !           249: *
        !           250: *  -- LAPACK computational routine (version 3.4.0) --
        !           251: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !           252: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !           253: *     November 2011
        !           254: *
        !           255: *     .. Scalar Arguments ..
        !           256:       CHARACTER          HOWMNY, SIDE
        !           257:       INTEGER            INFO, LDT, LDVL, LDVR, LWORK, LRWORK, M, MM, N
        !           258: *     ..
        !           259: *     .. Array Arguments ..
        !           260:       LOGICAL            SELECT( * )
        !           261:       DOUBLE PRECISION   RWORK( * )
        !           262:       COMPLEX*16         T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
        !           263:      $                   WORK( * )
        !           264: *     ..
        !           265: *
        !           266: *  =====================================================================
        !           267: *
        !           268: *     .. Parameters ..
        !           269:       DOUBLE PRECISION   ZERO, ONE
        !           270:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
        !           271:       COMPLEX*16         CZERO, CONE
        !           272:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
        !           273:      $                     CONE  = ( 1.0D+0, 0.0D+0 ) )
        !           274:       INTEGER            NBMIN, NBMAX
        !           275:       PARAMETER          ( NBMIN = 8, NBMAX = 128 )
        !           276: *     ..
        !           277: *     .. Local Scalars ..
        !           278:       LOGICAL            ALLV, BOTHV, LEFTV, LQUERY, OVER, RIGHTV, SOMEV
        !           279:       INTEGER            I, II, IS, J, K, KI, IV, MAXWRK, NB
        !           280:       DOUBLE PRECISION   OVFL, REMAX, SCALE, SMIN, SMLNUM, ULP, UNFL
        !           281:       COMPLEX*16         CDUM
        !           282: *     ..
        !           283: *     .. External Functions ..
        !           284:       LOGICAL            LSAME
        !           285:       INTEGER            ILAENV, IZAMAX
        !           286:       DOUBLE PRECISION   DLAMCH, DZASUM
        !           287:       EXTERNAL           LSAME, ILAENV, IZAMAX, DLAMCH, DZASUM
        !           288: *     ..
        !           289: *     .. External Subroutines ..
        !           290:       EXTERNAL           XERBLA, ZCOPY, ZDSCAL, ZGEMV, ZLATRS
        !           291: *     ..
        !           292: *     .. Intrinsic Functions ..
        !           293:       INTRINSIC          ABS, DBLE, DCMPLX, CONJG, AIMAG, MAX
        !           294: *     ..
        !           295: *     .. Statement Functions ..
        !           296:       DOUBLE PRECISION   CABS1
        !           297: *     ..
        !           298: *     .. Statement Function definitions ..
        !           299:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( AIMAG( CDUM ) )
        !           300: *     ..
        !           301: *     .. Executable Statements ..
        !           302: *
        !           303: *     Decode and test the input parameters
        !           304: *
        !           305:       BOTHV  = LSAME( SIDE, 'B' )
        !           306:       RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV
        !           307:       LEFTV  = LSAME( SIDE, 'L' ) .OR. BOTHV
        !           308: *
        !           309:       ALLV  = LSAME( HOWMNY, 'A' )
        !           310:       OVER  = LSAME( HOWMNY, 'B' )
        !           311:       SOMEV = LSAME( HOWMNY, 'S' )
        !           312: *
        !           313: *     Set M to the number of columns required to store the selected
        !           314: *     eigenvectors.
        !           315: *
        !           316:       IF( SOMEV ) THEN
        !           317:          M = 0
        !           318:          DO 10 J = 1, N
        !           319:             IF( SELECT( J ) )
        !           320:      $         M = M + 1
        !           321:    10    CONTINUE
        !           322:       ELSE
        !           323:          M = N
        !           324:       END IF
        !           325: *
        !           326:       INFO = 0
        !           327:       NB = ILAENV( 1, 'ZTREVC', SIDE // HOWMNY, N, -1, -1, -1 )
        !           328:       MAXWRK = N + 2*N*NB
        !           329:       WORK(1) = MAXWRK
        !           330:       RWORK(1) = N
        !           331:       LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 )
        !           332:       IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
        !           333:          INFO = -1
        !           334:       ELSE IF( .NOT.ALLV .AND. .NOT.OVER .AND. .NOT.SOMEV ) THEN
        !           335:          INFO = -2
        !           336:       ELSE IF( N.LT.0 ) THEN
        !           337:          INFO = -4
        !           338:       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
        !           339:          INFO = -6
        !           340:       ELSE IF( LDVL.LT.1 .OR. ( LEFTV .AND. LDVL.LT.N ) ) THEN
        !           341:          INFO = -8
        !           342:       ELSE IF( LDVR.LT.1 .OR. ( RIGHTV .AND. LDVR.LT.N ) ) THEN
        !           343:          INFO = -10
        !           344:       ELSE IF( MM.LT.M ) THEN
        !           345:          INFO = -11
        !           346:       ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN
        !           347:          INFO = -14
        !           348:       ELSE IF ( LRWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
        !           349:          INFO = -16
        !           350:       END IF
        !           351:       IF( INFO.NE.0 ) THEN
        !           352:          CALL XERBLA( 'ZTREVC3', -INFO )
        !           353:          RETURN
        !           354:       ELSE IF( LQUERY ) THEN
        !           355:          RETURN
        !           356:       END IF
        !           357: *
        !           358: *     Quick return if possible.
        !           359: *
        !           360:       IF( N.EQ.0 )
        !           361:      $   RETURN
        !           362: *
        !           363: *     Use blocked version of back-transformation if sufficient workspace.
        !           364: *     Zero-out the workspace to avoid potential NaN propagation.
        !           365: *
        !           366:       IF( OVER .AND. LWORK .GE. N + 2*N*NBMIN ) THEN
        !           367:          NB = (LWORK - N) / (2*N)
        !           368:          NB = MIN( NB, NBMAX )
        !           369:          CALL ZLASET( 'F', N, 1+2*NB, CZERO, CZERO, WORK, N )
        !           370:       ELSE
        !           371:          NB = 1
        !           372:       END IF
        !           373: *
        !           374: *     Set the constants to control overflow.
        !           375: *
        !           376:       UNFL = DLAMCH( 'Safe minimum' )
        !           377:       OVFL = ONE / UNFL
        !           378:       CALL DLABAD( UNFL, OVFL )
        !           379:       ULP = DLAMCH( 'Precision' )
        !           380:       SMLNUM = UNFL*( N / ULP )
        !           381: *
        !           382: *     Store the diagonal elements of T in working array WORK.
        !           383: *
        !           384:       DO 20 I = 1, N
        !           385:          WORK( I ) = T( I, I )
        !           386:    20 CONTINUE
        !           387: *
        !           388: *     Compute 1-norm of each column of strictly upper triangular
        !           389: *     part of T to control overflow in triangular solver.
        !           390: *
        !           391:       RWORK( 1 ) = ZERO
        !           392:       DO 30 J = 2, N
        !           393:          RWORK( J ) = DZASUM( J-1, T( 1, J ), 1 )
        !           394:    30 CONTINUE
        !           395: *
        !           396:       IF( RIGHTV ) THEN
        !           397: *
        !           398: *        ============================================================
        !           399: *        Compute right eigenvectors.
        !           400: *
        !           401: *        IV is index of column in current block.
        !           402: *        Non-blocked version always uses IV=NB=1;
        !           403: *        blocked     version starts with IV=NB, goes down to 1.
        !           404: *        (Note the "0-th" column is used to store the original diagonal.)
        !           405:          IV = NB
        !           406:          IS = M
        !           407:          DO 80 KI = N, 1, -1
        !           408:             IF( SOMEV ) THEN
        !           409:                IF( .NOT.SELECT( KI ) )
        !           410:      $            GO TO 80
        !           411:             END IF
        !           412:             SMIN = MAX( ULP*( CABS1( T( KI, KI ) ) ), SMLNUM )
        !           413: *
        !           414: *           --------------------------------------------------------
        !           415: *           Complex right eigenvector
        !           416: *
        !           417:             WORK( KI + IV*N ) = CONE
        !           418: *
        !           419: *           Form right-hand side.
        !           420: *
        !           421:             DO 40 K = 1, KI - 1
        !           422:                WORK( K + IV*N ) = -T( K, KI )
        !           423:    40       CONTINUE
        !           424: *
        !           425: *           Solve upper triangular system:
        !           426: *           [ T(1:KI-1,1:KI-1) - T(KI,KI) ]*X = SCALE*WORK.
        !           427: *
        !           428:             DO 50 K = 1, KI - 1
        !           429:                T( K, K ) = T( K, K ) - T( KI, KI )
        !           430:                IF( CABS1( T( K, K ) ).LT.SMIN )
        !           431:      $            T( K, K ) = SMIN
        !           432:    50       CONTINUE
        !           433: *
        !           434:             IF( KI.GT.1 ) THEN
        !           435:                CALL ZLATRS( 'Upper', 'No transpose', 'Non-unit', 'Y',
        !           436:      $                      KI-1, T, LDT, WORK( 1 + IV*N ), SCALE,
        !           437:      $                      RWORK, INFO )
        !           438:                WORK( KI + IV*N ) = SCALE
        !           439:             END IF
        !           440: *
        !           441: *           Copy the vector x or Q*x to VR and normalize.
        !           442: *
        !           443:             IF( .NOT.OVER ) THEN
        !           444: *              ------------------------------
        !           445: *              no back-transform: copy x to VR and normalize.
        !           446:                CALL ZCOPY( KI, WORK( 1 + IV*N ), 1, VR( 1, IS ), 1 )
        !           447: *
        !           448:                II = IZAMAX( KI, VR( 1, IS ), 1 )
        !           449:                REMAX = ONE / CABS1( VR( II, IS ) )
        !           450:                CALL ZDSCAL( KI, REMAX, VR( 1, IS ), 1 )
        !           451: *
        !           452:                DO 60 K = KI + 1, N
        !           453:                   VR( K, IS ) = CZERO
        !           454:    60          CONTINUE
        !           455: *
        !           456:             ELSE IF( NB.EQ.1 ) THEN
        !           457: *              ------------------------------
        !           458: *              version 1: back-transform each vector with GEMV, Q*x.
        !           459:                IF( KI.GT.1 )
        !           460:      $            CALL ZGEMV( 'N', N, KI-1, CONE, VR, LDVR,
        !           461:      $                        WORK( 1 + IV*N ), 1, DCMPLX( SCALE ),
        !           462:      $                        VR( 1, KI ), 1 )
        !           463: *
        !           464:                II = IZAMAX( N, VR( 1, KI ), 1 )
        !           465:                REMAX = ONE / CABS1( VR( II, KI ) )
        !           466:                CALL ZDSCAL( N, REMAX, VR( 1, KI ), 1 )
        !           467: *
        !           468:             ELSE
        !           469: *              ------------------------------
        !           470: *              version 2: back-transform block of vectors with GEMM
        !           471: *              zero out below vector
        !           472:                DO K = KI + 1, N
        !           473:                   WORK( K + IV*N ) = CZERO
        !           474:                END DO
        !           475: *
        !           476: *              Columns IV:NB of work are valid vectors.
        !           477: *              When the number of vectors stored reaches NB,
        !           478: *              or if this was last vector, do the GEMM
        !           479:                IF( (IV.EQ.1) .OR. (KI.EQ.1) ) THEN
        !           480:                   CALL ZGEMM( 'N', 'N', N, NB-IV+1, KI+NB-IV, CONE,
        !           481:      $                        VR, LDVR,
        !           482:      $                        WORK( 1 + (IV)*N    ), N,
        !           483:      $                        CZERO,
        !           484:      $                        WORK( 1 + (NB+IV)*N ), N )
        !           485: *                 normalize vectors
        !           486:                   DO K = IV, NB
        !           487:                      II = IZAMAX( N, WORK( 1 + (NB+K)*N ), 1 )
        !           488:                      REMAX = ONE / CABS1( WORK( II + (NB+K)*N ) )
        !           489:                      CALL ZDSCAL( N, REMAX, WORK( 1 + (NB+K)*N ), 1 )
        !           490:                   END DO
        !           491:                   CALL ZLACPY( 'F', N, NB-IV+1,
        !           492:      $                         WORK( 1 + (NB+IV)*N ), N,
        !           493:      $                         VR( 1, KI ), LDVR )
        !           494:                   IV = NB
        !           495:                ELSE
        !           496:                   IV = IV - 1
        !           497:                END IF
        !           498:             END IF
        !           499: *
        !           500: *           Restore the original diagonal elements of T.
        !           501: *
        !           502:             DO 70 K = 1, KI - 1
        !           503:                T( K, K ) = WORK( K )
        !           504:    70       CONTINUE
        !           505: *
        !           506:             IS = IS - 1
        !           507:    80    CONTINUE
        !           508:       END IF
        !           509: *
        !           510:       IF( LEFTV ) THEN
        !           511: *
        !           512: *        ============================================================
        !           513: *        Compute left eigenvectors.
        !           514: *
        !           515: *        IV is index of column in current block.
        !           516: *        Non-blocked version always uses IV=1;
        !           517: *        blocked     version starts with IV=1, goes up to NB.
        !           518: *        (Note the "0-th" column is used to store the original diagonal.)
        !           519:          IV = 1
        !           520:          IS = 1
        !           521:          DO 130 KI = 1, N
        !           522: *
        !           523:             IF( SOMEV ) THEN
        !           524:                IF( .NOT.SELECT( KI ) )
        !           525:      $            GO TO 130
        !           526:             END IF
        !           527:             SMIN = MAX( ULP*( CABS1( T( KI, KI ) ) ), SMLNUM )
        !           528: *
        !           529: *           --------------------------------------------------------
        !           530: *           Complex left eigenvector
        !           531: *
        !           532:             WORK( KI + IV*N ) = CONE
        !           533: *
        !           534: *           Form right-hand side.
        !           535: *
        !           536:             DO 90 K = KI + 1, N
        !           537:                WORK( K + IV*N ) = -CONJG( T( KI, K ) )
        !           538:    90       CONTINUE
        !           539: *
        !           540: *           Solve conjugate-transposed triangular system:
        !           541: *           [ T(KI+1:N,KI+1:N) - T(KI,KI) ]**H * X = SCALE*WORK.
        !           542: *
        !           543:             DO 100 K = KI + 1, N
        !           544:                T( K, K ) = T( K, K ) - T( KI, KI )
        !           545:                IF( CABS1( T( K, K ) ).LT.SMIN )
        !           546:      $            T( K, K ) = SMIN
        !           547:   100       CONTINUE
        !           548: *
        !           549:             IF( KI.LT.N ) THEN
        !           550:                CALL ZLATRS( 'Upper', 'Conjugate transpose', 'Non-unit',
        !           551:      $                      'Y', N-KI, T( KI+1, KI+1 ), LDT,
        !           552:      $                      WORK( KI+1 + IV*N ), SCALE, RWORK, INFO )
        !           553:                WORK( KI + IV*N ) = SCALE
        !           554:             END IF
        !           555: *
        !           556: *           Copy the vector x or Q*x to VL and normalize.
        !           557: *
        !           558:             IF( .NOT.OVER ) THEN
        !           559: *              ------------------------------
        !           560: *              no back-transform: copy x to VL and normalize.
        !           561:                CALL ZCOPY( N-KI+1, WORK( KI + IV*N ), 1, VL(KI,IS), 1 )
        !           562: *
        !           563:                II = IZAMAX( N-KI+1, VL( KI, IS ), 1 ) + KI - 1
        !           564:                REMAX = ONE / CABS1( VL( II, IS ) )
        !           565:                CALL ZDSCAL( N-KI+1, REMAX, VL( KI, IS ), 1 )
        !           566: *
        !           567:                DO 110 K = 1, KI - 1
        !           568:                   VL( K, IS ) = CZERO
        !           569:   110          CONTINUE
        !           570: *
        !           571:             ELSE IF( NB.EQ.1 ) THEN
        !           572: *              ------------------------------
        !           573: *              version 1: back-transform each vector with GEMV, Q*x.
        !           574:                IF( KI.LT.N )
        !           575:      $            CALL ZGEMV( 'N', N, N-KI, CONE, VL( 1, KI+1 ), LDVL,
        !           576:      $                        WORK( KI+1 + IV*N ), 1, DCMPLX( SCALE ),
        !           577:      $                        VL( 1, KI ), 1 )
        !           578: *
        !           579:                II = IZAMAX( N, VL( 1, KI ), 1 )
        !           580:                REMAX = ONE / CABS1( VL( II, KI ) )
        !           581:                CALL ZDSCAL( N, REMAX, VL( 1, KI ), 1 )
        !           582: *
        !           583:             ELSE
        !           584: *              ------------------------------
        !           585: *              version 2: back-transform block of vectors with GEMM
        !           586: *              zero out above vector
        !           587: *              could go from KI-NV+1 to KI-1
        !           588:                DO K = 1, KI - 1
        !           589:                   WORK( K + IV*N ) = CZERO
        !           590:                END DO
        !           591: *
        !           592: *              Columns 1:IV of work are valid vectors.
        !           593: *              When the number of vectors stored reaches NB,
        !           594: *              or if this was last vector, do the GEMM
        !           595:                IF( (IV.EQ.NB) .OR. (KI.EQ.N) ) THEN
        !           596:                   CALL ZGEMM( 'N', 'N', N, IV, N-KI+IV, ONE,
        !           597:      $                        VL( 1, KI-IV+1 ), LDVL,
        !           598:      $                        WORK( KI-IV+1 + (1)*N ), N,
        !           599:      $                        CZERO,
        !           600:      $                        WORK( 1 + (NB+1)*N ), N )
        !           601: *                 normalize vectors
        !           602:                   DO K = 1, IV
        !           603:                      II = IZAMAX( N, WORK( 1 + (NB+K)*N ), 1 )
        !           604:                      REMAX = ONE / CABS1( WORK( II + (NB+K)*N ) )
        !           605:                      CALL ZDSCAL( N, REMAX, WORK( 1 + (NB+K)*N ), 1 )
        !           606:                   END DO
        !           607:                   CALL ZLACPY( 'F', N, IV,
        !           608:      $                         WORK( 1 + (NB+1)*N ), N,
        !           609:      $                         VL( 1, KI-IV+1 ), LDVL )
        !           610:                   IV = 1
        !           611:                ELSE
        !           612:                   IV = IV + 1
        !           613:                END IF
        !           614:             END IF
        !           615: *
        !           616: *           Restore the original diagonal elements of T.
        !           617: *
        !           618:             DO 120 K = KI + 1, N
        !           619:                T( K, K ) = WORK( K )
        !           620:   120       CONTINUE
        !           621: *
        !           622:             IS = IS + 1
        !           623:   130    CONTINUE
        !           624:       END IF
        !           625: *
        !           626:       RETURN
        !           627: *
        !           628: *     End of ZTREVC3
        !           629: *
        !           630:       END

CVSweb interface <joel.bertrand@systella.fr>