File:  [local] / rpl / lapack / lapack / ztrevc.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Fri Aug 6 15:32:50 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Cohérence

    1:       SUBROUTINE ZTREVC( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
    2:      $                   LDVR, MM, M, WORK, RWORK, INFO )
    3: *
    4: *  -- LAPACK routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       CHARACTER          HOWMNY, SIDE
   11:       INTEGER            INFO, LDT, LDVL, LDVR, M, MM, N
   12: *     ..
   13: *     .. Array Arguments ..
   14:       LOGICAL            SELECT( * )
   15:       DOUBLE PRECISION   RWORK( * )
   16:       COMPLEX*16         T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
   17:      $                   WORK( * )
   18: *     ..
   19: *
   20: *  Purpose
   21: *  =======
   22: *
   23: *  ZTREVC computes some or all of the right and/or left eigenvectors of
   24: *  a complex upper triangular matrix T.
   25: *  Matrices of this type are produced by the Schur factorization of
   26: *  a complex general matrix:  A = Q*T*Q**H, as computed by ZHSEQR.
   27: *  
   28: *  The right eigenvector x and the left eigenvector y of T corresponding
   29: *  to an eigenvalue w are defined by:
   30: *  
   31: *               T*x = w*x,     (y**H)*T = w*(y**H)
   32: *  
   33: *  where y**H denotes the conjugate transpose of the vector y.
   34: *  The eigenvalues are not input to this routine, but are read directly
   35: *  from the diagonal of T.
   36: *  
   37: *  This routine returns the matrices X and/or Y of right and left
   38: *  eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an
   39: *  input matrix.  If Q is the unitary factor that reduces a matrix A to
   40: *  Schur form T, then Q*X and Q*Y are the matrices of right and left
   41: *  eigenvectors of A.
   42: *
   43: *  Arguments
   44: *  =========
   45: *
   46: *  SIDE    (input) CHARACTER*1
   47: *          = 'R':  compute right eigenvectors only;
   48: *          = 'L':  compute left eigenvectors only;
   49: *          = 'B':  compute both right and left eigenvectors.
   50: *
   51: *  HOWMNY  (input) CHARACTER*1
   52: *          = 'A':  compute all right and/or left eigenvectors;
   53: *          = 'B':  compute all right and/or left eigenvectors,
   54: *                  backtransformed using the matrices supplied in
   55: *                  VR and/or VL;
   56: *          = 'S':  compute selected right and/or left eigenvectors,
   57: *                  as indicated by the logical array SELECT.
   58: *
   59: *  SELECT  (input) LOGICAL array, dimension (N)
   60: *          If HOWMNY = 'S', SELECT specifies the eigenvectors to be
   61: *          computed.
   62: *          The eigenvector corresponding to the j-th eigenvalue is
   63: *          computed if SELECT(j) = .TRUE..
   64: *          Not referenced if HOWMNY = 'A' or 'B'.
   65: *
   66: *  N       (input) INTEGER
   67: *          The order of the matrix T. N >= 0.
   68: *
   69: *  T       (input/output) COMPLEX*16 array, dimension (LDT,N)
   70: *          The upper triangular matrix T.  T is modified, but restored
   71: *          on exit.
   72: *
   73: *  LDT     (input) INTEGER
   74: *          The leading dimension of the array T. LDT >= max(1,N).
   75: *
   76: *  VL      (input/output) COMPLEX*16 array, dimension (LDVL,MM)
   77: *          On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
   78: *          contain an N-by-N matrix Q (usually the unitary matrix Q of
   79: *          Schur vectors returned by ZHSEQR).
   80: *          On exit, if SIDE = 'L' or 'B', VL contains:
   81: *          if HOWMNY = 'A', the matrix Y of left eigenvectors of T;
   82: *          if HOWMNY = 'B', the matrix Q*Y;
   83: *          if HOWMNY = 'S', the left eigenvectors of T specified by
   84: *                           SELECT, stored consecutively in the columns
   85: *                           of VL, in the same order as their
   86: *                           eigenvalues.
   87: *          Not referenced if SIDE = 'R'.
   88: *
   89: *  LDVL    (input) INTEGER
   90: *          The leading dimension of the array VL.  LDVL >= 1, and if
   91: *          SIDE = 'L' or 'B', LDVL >= N.
   92: *
   93: *  VR      (input/output) COMPLEX*16 array, dimension (LDVR,MM)
   94: *          On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
   95: *          contain an N-by-N matrix Q (usually the unitary matrix Q of
   96: *          Schur vectors returned by ZHSEQR).
   97: *          On exit, if SIDE = 'R' or 'B', VR contains:
   98: *          if HOWMNY = 'A', the matrix X of right eigenvectors of T;
   99: *          if HOWMNY = 'B', the matrix Q*X;
  100: *          if HOWMNY = 'S', the right eigenvectors of T specified by
  101: *                           SELECT, stored consecutively in the columns
  102: *                           of VR, in the same order as their
  103: *                           eigenvalues.
  104: *          Not referenced if SIDE = 'L'.
  105: *
  106: *  LDVR    (input) INTEGER
  107: *          The leading dimension of the array VR.  LDVR >= 1, and if
  108: *          SIDE = 'R' or 'B'; LDVR >= N.
  109: *
  110: *  MM      (input) INTEGER
  111: *          The number of columns in the arrays VL and/or VR. MM >= M.
  112: *
  113: *  M       (output) INTEGER
  114: *          The number of columns in the arrays VL and/or VR actually
  115: *          used to store the eigenvectors.  If HOWMNY = 'A' or 'B', M
  116: *          is set to N.  Each selected eigenvector occupies one
  117: *          column.
  118: *
  119: *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
  120: *
  121: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
  122: *
  123: *  INFO    (output) INTEGER
  124: *          = 0:  successful exit
  125: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  126: *
  127: *  Further Details
  128: *  ===============
  129: *
  130: *  The algorithm used in this program is basically backward (forward)
  131: *  substitution, with scaling to make the the code robust against
  132: *  possible overflow.
  133: *
  134: *  Each eigenvector is normalized so that the element of largest
  135: *  magnitude has magnitude 1; here the magnitude of a complex number
  136: *  (x,y) is taken to be |x| + |y|.
  137: *
  138: *  =====================================================================
  139: *
  140: *     .. Parameters ..
  141:       DOUBLE PRECISION   ZERO, ONE
  142:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  143:       COMPLEX*16         CMZERO, CMONE
  144:       PARAMETER          ( CMZERO = ( 0.0D+0, 0.0D+0 ),
  145:      $                   CMONE = ( 1.0D+0, 0.0D+0 ) )
  146: *     ..
  147: *     .. Local Scalars ..
  148:       LOGICAL            ALLV, BOTHV, LEFTV, OVER, RIGHTV, SOMEV
  149:       INTEGER            I, II, IS, J, K, KI
  150:       DOUBLE PRECISION   OVFL, REMAX, SCALE, SMIN, SMLNUM, ULP, UNFL
  151:       COMPLEX*16         CDUM
  152: *     ..
  153: *     .. External Functions ..
  154:       LOGICAL            LSAME
  155:       INTEGER            IZAMAX
  156:       DOUBLE PRECISION   DLAMCH, DZASUM
  157:       EXTERNAL           LSAME, IZAMAX, DLAMCH, DZASUM
  158: *     ..
  159: *     .. External Subroutines ..
  160:       EXTERNAL           XERBLA, ZCOPY, ZDSCAL, ZGEMV, ZLATRS
  161: *     ..
  162: *     .. Intrinsic Functions ..
  163:       INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX
  164: *     ..
  165: *     .. Statement Functions ..
  166:       DOUBLE PRECISION   CABS1
  167: *     ..
  168: *     .. Statement Function definitions ..
  169:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
  170: *     ..
  171: *     .. Executable Statements ..
  172: *
  173: *     Decode and test the input parameters
  174: *
  175:       BOTHV = LSAME( SIDE, 'B' )
  176:       RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV
  177:       LEFTV = LSAME( SIDE, 'L' ) .OR. BOTHV
  178: *
  179:       ALLV = LSAME( HOWMNY, 'A' )
  180:       OVER = LSAME( HOWMNY, 'B' )
  181:       SOMEV = LSAME( HOWMNY, 'S' )
  182: *
  183: *     Set M to the number of columns required to store the selected
  184: *     eigenvectors.
  185: *
  186:       IF( SOMEV ) THEN
  187:          M = 0
  188:          DO 10 J = 1, N
  189:             IF( SELECT( J ) )
  190:      $         M = M + 1
  191:    10    CONTINUE
  192:       ELSE
  193:          M = N
  194:       END IF
  195: *
  196:       INFO = 0
  197:       IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
  198:          INFO = -1
  199:       ELSE IF( .NOT.ALLV .AND. .NOT.OVER .AND. .NOT.SOMEV ) THEN
  200:          INFO = -2
  201:       ELSE IF( N.LT.0 ) THEN
  202:          INFO = -4
  203:       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
  204:          INFO = -6
  205:       ELSE IF( LDVL.LT.1 .OR. ( LEFTV .AND. LDVL.LT.N ) ) THEN
  206:          INFO = -8
  207:       ELSE IF( LDVR.LT.1 .OR. ( RIGHTV .AND. LDVR.LT.N ) ) THEN
  208:          INFO = -10
  209:       ELSE IF( MM.LT.M ) THEN
  210:          INFO = -11
  211:       END IF
  212:       IF( INFO.NE.0 ) THEN
  213:          CALL XERBLA( 'ZTREVC', -INFO )
  214:          RETURN
  215:       END IF
  216: *
  217: *     Quick return if possible.
  218: *
  219:       IF( N.EQ.0 )
  220:      $   RETURN
  221: *
  222: *     Set the constants to control overflow.
  223: *
  224:       UNFL = DLAMCH( 'Safe minimum' )
  225:       OVFL = ONE / UNFL
  226:       CALL DLABAD( UNFL, OVFL )
  227:       ULP = DLAMCH( 'Precision' )
  228:       SMLNUM = UNFL*( N / ULP )
  229: *
  230: *     Store the diagonal elements of T in working array WORK.
  231: *
  232:       DO 20 I = 1, N
  233:          WORK( I+N ) = T( I, I )
  234:    20 CONTINUE
  235: *
  236: *     Compute 1-norm of each column of strictly upper triangular
  237: *     part of T to control overflow in triangular solver.
  238: *
  239:       RWORK( 1 ) = ZERO
  240:       DO 30 J = 2, N
  241:          RWORK( J ) = DZASUM( J-1, T( 1, J ), 1 )
  242:    30 CONTINUE
  243: *
  244:       IF( RIGHTV ) THEN
  245: *
  246: *        Compute right eigenvectors.
  247: *
  248:          IS = M
  249:          DO 80 KI = N, 1, -1
  250: *
  251:             IF( SOMEV ) THEN
  252:                IF( .NOT.SELECT( KI ) )
  253:      $            GO TO 80
  254:             END IF
  255:             SMIN = MAX( ULP*( CABS1( T( KI, KI ) ) ), SMLNUM )
  256: *
  257:             WORK( 1 ) = CMONE
  258: *
  259: *           Form right-hand side.
  260: *
  261:             DO 40 K = 1, KI - 1
  262:                WORK( K ) = -T( K, KI )
  263:    40       CONTINUE
  264: *
  265: *           Solve the triangular system:
  266: *              (T(1:KI-1,1:KI-1) - T(KI,KI))*X = SCALE*WORK.
  267: *
  268:             DO 50 K = 1, KI - 1
  269:                T( K, K ) = T( K, K ) - T( KI, KI )
  270:                IF( CABS1( T( K, K ) ).LT.SMIN )
  271:      $            T( K, K ) = SMIN
  272:    50       CONTINUE
  273: *
  274:             IF( KI.GT.1 ) THEN
  275:                CALL ZLATRS( 'Upper', 'No transpose', 'Non-unit', 'Y',
  276:      $                      KI-1, T, LDT, WORK( 1 ), SCALE, RWORK,
  277:      $                      INFO )
  278:                WORK( KI ) = SCALE
  279:             END IF
  280: *
  281: *           Copy the vector x or Q*x to VR and normalize.
  282: *
  283:             IF( .NOT.OVER ) THEN
  284:                CALL ZCOPY( KI, WORK( 1 ), 1, VR( 1, IS ), 1 )
  285: *
  286:                II = IZAMAX( KI, VR( 1, IS ), 1 )
  287:                REMAX = ONE / CABS1( VR( II, IS ) )
  288:                CALL ZDSCAL( KI, REMAX, VR( 1, IS ), 1 )
  289: *
  290:                DO 60 K = KI + 1, N
  291:                   VR( K, IS ) = CMZERO
  292:    60          CONTINUE
  293:             ELSE
  294:                IF( KI.GT.1 )
  295:      $            CALL ZGEMV( 'N', N, KI-1, CMONE, VR, LDVR, WORK( 1 ),
  296:      $                        1, DCMPLX( SCALE ), VR( 1, KI ), 1 )
  297: *
  298:                II = IZAMAX( N, VR( 1, KI ), 1 )
  299:                REMAX = ONE / CABS1( VR( II, KI ) )
  300:                CALL ZDSCAL( N, REMAX, VR( 1, KI ), 1 )
  301:             END IF
  302: *
  303: *           Set back the original diagonal elements of T.
  304: *
  305:             DO 70 K = 1, KI - 1
  306:                T( K, K ) = WORK( K+N )
  307:    70       CONTINUE
  308: *
  309:             IS = IS - 1
  310:    80    CONTINUE
  311:       END IF
  312: *
  313:       IF( LEFTV ) THEN
  314: *
  315: *        Compute left eigenvectors.
  316: *
  317:          IS = 1
  318:          DO 130 KI = 1, N
  319: *
  320:             IF( SOMEV ) THEN
  321:                IF( .NOT.SELECT( KI ) )
  322:      $            GO TO 130
  323:             END IF
  324:             SMIN = MAX( ULP*( CABS1( T( KI, KI ) ) ), SMLNUM )
  325: *
  326:             WORK( N ) = CMONE
  327: *
  328: *           Form right-hand side.
  329: *
  330:             DO 90 K = KI + 1, N
  331:                WORK( K ) = -DCONJG( T( KI, K ) )
  332:    90       CONTINUE
  333: *
  334: *           Solve the triangular system:
  335: *              (T(KI+1:N,KI+1:N) - T(KI,KI))'*X = SCALE*WORK.
  336: *
  337:             DO 100 K = KI + 1, N
  338:                T( K, K ) = T( K, K ) - T( KI, KI )
  339:                IF( CABS1( T( K, K ) ).LT.SMIN )
  340:      $            T( K, K ) = SMIN
  341:   100       CONTINUE
  342: *
  343:             IF( KI.LT.N ) THEN
  344:                CALL ZLATRS( 'Upper', 'Conjugate transpose', 'Non-unit',
  345:      $                      'Y', N-KI, T( KI+1, KI+1 ), LDT,
  346:      $                      WORK( KI+1 ), SCALE, RWORK, INFO )
  347:                WORK( KI ) = SCALE
  348:             END IF
  349: *
  350: *           Copy the vector x or Q*x to VL and normalize.
  351: *
  352:             IF( .NOT.OVER ) THEN
  353:                CALL ZCOPY( N-KI+1, WORK( KI ), 1, VL( KI, IS ), 1 )
  354: *
  355:                II = IZAMAX( N-KI+1, VL( KI, IS ), 1 ) + KI - 1
  356:                REMAX = ONE / CABS1( VL( II, IS ) )
  357:                CALL ZDSCAL( N-KI+1, REMAX, VL( KI, IS ), 1 )
  358: *
  359:                DO 110 K = 1, KI - 1
  360:                   VL( K, IS ) = CMZERO
  361:   110          CONTINUE
  362:             ELSE
  363:                IF( KI.LT.N )
  364:      $            CALL ZGEMV( 'N', N, N-KI, CMONE, VL( 1, KI+1 ), LDVL,
  365:      $                        WORK( KI+1 ), 1, DCMPLX( SCALE ),
  366:      $                        VL( 1, KI ), 1 )
  367: *
  368:                II = IZAMAX( N, VL( 1, KI ), 1 )
  369:                REMAX = ONE / CABS1( VL( II, KI ) )
  370:                CALL ZDSCAL( N, REMAX, VL( 1, KI ), 1 )
  371:             END IF
  372: *
  373: *           Set back the original diagonal elements of T.
  374: *
  375:             DO 120 K = KI + 1, N
  376:                T( K, K ) = WORK( K+N )
  377:   120       CONTINUE
  378: *
  379:             IS = IS + 1
  380:   130    CONTINUE
  381:       END IF
  382: *
  383:       RETURN
  384: *
  385: *     End of ZTREVC
  386: *
  387:       END

CVSweb interface <joel.bertrand@systella.fr>