Annotation of rpl/lapack/lapack/ztrevc.f, revision 1.9

1.9     ! bertrand    1: *> \brief \b ZTREVC
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZTREVC + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztrevc.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztrevc.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztrevc.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZTREVC( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
        !            22: *                          LDVR, MM, M, WORK, RWORK, INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       CHARACTER          HOWMNY, SIDE
        !            26: *       INTEGER            INFO, LDT, LDVL, LDVR, M, MM, N
        !            27: *       ..
        !            28: *       .. Array Arguments ..
        !            29: *       LOGICAL            SELECT( * )
        !            30: *       DOUBLE PRECISION   RWORK( * )
        !            31: *       COMPLEX*16         T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
        !            32: *      $                   WORK( * )
        !            33: *       ..
        !            34: *  
        !            35: *
        !            36: *> \par Purpose:
        !            37: *  =============
        !            38: *>
        !            39: *> \verbatim
        !            40: *>
        !            41: *> ZTREVC computes some or all of the right and/or left eigenvectors of
        !            42: *> a complex upper triangular matrix T.
        !            43: *> Matrices of this type are produced by the Schur factorization of
        !            44: *> a complex general matrix:  A = Q*T*Q**H, as computed by ZHSEQR.
        !            45: *> 
        !            46: *> The right eigenvector x and the left eigenvector y of T corresponding
        !            47: *> to an eigenvalue w are defined by:
        !            48: *> 
        !            49: *>              T*x = w*x,     (y**H)*T = w*(y**H)
        !            50: *> 
        !            51: *> where y**H denotes the conjugate transpose of the vector y.
        !            52: *> The eigenvalues are not input to this routine, but are read directly
        !            53: *> from the diagonal of T.
        !            54: *> 
        !            55: *> This routine returns the matrices X and/or Y of right and left
        !            56: *> eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an
        !            57: *> input matrix.  If Q is the unitary factor that reduces a matrix A to
        !            58: *> Schur form T, then Q*X and Q*Y are the matrices of right and left
        !            59: *> eigenvectors of A.
        !            60: *> \endverbatim
        !            61: *
        !            62: *  Arguments:
        !            63: *  ==========
        !            64: *
        !            65: *> \param[in] SIDE
        !            66: *> \verbatim
        !            67: *>          SIDE is CHARACTER*1
        !            68: *>          = 'R':  compute right eigenvectors only;
        !            69: *>          = 'L':  compute left eigenvectors only;
        !            70: *>          = 'B':  compute both right and left eigenvectors.
        !            71: *> \endverbatim
        !            72: *>
        !            73: *> \param[in] HOWMNY
        !            74: *> \verbatim
        !            75: *>          HOWMNY is CHARACTER*1
        !            76: *>          = 'A':  compute all right and/or left eigenvectors;
        !            77: *>          = 'B':  compute all right and/or left eigenvectors,
        !            78: *>                  backtransformed using the matrices supplied in
        !            79: *>                  VR and/or VL;
        !            80: *>          = 'S':  compute selected right and/or left eigenvectors,
        !            81: *>                  as indicated by the logical array SELECT.
        !            82: *> \endverbatim
        !            83: *>
        !            84: *> \param[in] SELECT
        !            85: *> \verbatim
        !            86: *>          SELECT is LOGICAL array, dimension (N)
        !            87: *>          If HOWMNY = 'S', SELECT specifies the eigenvectors to be
        !            88: *>          computed.
        !            89: *>          The eigenvector corresponding to the j-th eigenvalue is
        !            90: *>          computed if SELECT(j) = .TRUE..
        !            91: *>          Not referenced if HOWMNY = 'A' or 'B'.
        !            92: *> \endverbatim
        !            93: *>
        !            94: *> \param[in] N
        !            95: *> \verbatim
        !            96: *>          N is INTEGER
        !            97: *>          The order of the matrix T. N >= 0.
        !            98: *> \endverbatim
        !            99: *>
        !           100: *> \param[in,out] T
        !           101: *> \verbatim
        !           102: *>          T is COMPLEX*16 array, dimension (LDT,N)
        !           103: *>          The upper triangular matrix T.  T is modified, but restored
        !           104: *>          on exit.
        !           105: *> \endverbatim
        !           106: *>
        !           107: *> \param[in] LDT
        !           108: *> \verbatim
        !           109: *>          LDT is INTEGER
        !           110: *>          The leading dimension of the array T. LDT >= max(1,N).
        !           111: *> \endverbatim
        !           112: *>
        !           113: *> \param[in,out] VL
        !           114: *> \verbatim
        !           115: *>          VL is COMPLEX*16 array, dimension (LDVL,MM)
        !           116: *>          On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
        !           117: *>          contain an N-by-N matrix Q (usually the unitary matrix Q of
        !           118: *>          Schur vectors returned by ZHSEQR).
        !           119: *>          On exit, if SIDE = 'L' or 'B', VL contains:
        !           120: *>          if HOWMNY = 'A', the matrix Y of left eigenvectors of T;
        !           121: *>          if HOWMNY = 'B', the matrix Q*Y;
        !           122: *>          if HOWMNY = 'S', the left eigenvectors of T specified by
        !           123: *>                           SELECT, stored consecutively in the columns
        !           124: *>                           of VL, in the same order as their
        !           125: *>                           eigenvalues.
        !           126: *>          Not referenced if SIDE = 'R'.
        !           127: *> \endverbatim
        !           128: *>
        !           129: *> \param[in] LDVL
        !           130: *> \verbatim
        !           131: *>          LDVL is INTEGER
        !           132: *>          The leading dimension of the array VL.  LDVL >= 1, and if
        !           133: *>          SIDE = 'L' or 'B', LDVL >= N.
        !           134: *> \endverbatim
        !           135: *>
        !           136: *> \param[in,out] VR
        !           137: *> \verbatim
        !           138: *>          VR is COMPLEX*16 array, dimension (LDVR,MM)
        !           139: *>          On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
        !           140: *>          contain an N-by-N matrix Q (usually the unitary matrix Q of
        !           141: *>          Schur vectors returned by ZHSEQR).
        !           142: *>          On exit, if SIDE = 'R' or 'B', VR contains:
        !           143: *>          if HOWMNY = 'A', the matrix X of right eigenvectors of T;
        !           144: *>          if HOWMNY = 'B', the matrix Q*X;
        !           145: *>          if HOWMNY = 'S', the right eigenvectors of T specified by
        !           146: *>                           SELECT, stored consecutively in the columns
        !           147: *>                           of VR, in the same order as their
        !           148: *>                           eigenvalues.
        !           149: *>          Not referenced if SIDE = 'L'.
        !           150: *> \endverbatim
        !           151: *>
        !           152: *> \param[in] LDVR
        !           153: *> \verbatim
        !           154: *>          LDVR is INTEGER
        !           155: *>          The leading dimension of the array VR.  LDVR >= 1, and if
        !           156: *>          SIDE = 'R' or 'B'; LDVR >= N.
        !           157: *> \endverbatim
        !           158: *>
        !           159: *> \param[in] MM
        !           160: *> \verbatim
        !           161: *>          MM is INTEGER
        !           162: *>          The number of columns in the arrays VL and/or VR. MM >= M.
        !           163: *> \endverbatim
        !           164: *>
        !           165: *> \param[out] M
        !           166: *> \verbatim
        !           167: *>          M is INTEGER
        !           168: *>          The number of columns in the arrays VL and/or VR actually
        !           169: *>          used to store the eigenvectors.  If HOWMNY = 'A' or 'B', M
        !           170: *>          is set to N.  Each selected eigenvector occupies one
        !           171: *>          column.
        !           172: *> \endverbatim
        !           173: *>
        !           174: *> \param[out] WORK
        !           175: *> \verbatim
        !           176: *>          WORK is COMPLEX*16 array, dimension (2*N)
        !           177: *> \endverbatim
        !           178: *>
        !           179: *> \param[out] RWORK
        !           180: *> \verbatim
        !           181: *>          RWORK is DOUBLE PRECISION array, dimension (N)
        !           182: *> \endverbatim
        !           183: *>
        !           184: *> \param[out] INFO
        !           185: *> \verbatim
        !           186: *>          INFO is INTEGER
        !           187: *>          = 0:  successful exit
        !           188: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           189: *> \endverbatim
        !           190: *
        !           191: *  Authors:
        !           192: *  ========
        !           193: *
        !           194: *> \author Univ. of Tennessee 
        !           195: *> \author Univ. of California Berkeley 
        !           196: *> \author Univ. of Colorado Denver 
        !           197: *> \author NAG Ltd. 
        !           198: *
        !           199: *> \date November 2011
        !           200: *
        !           201: *> \ingroup complex16OTHERcomputational
        !           202: *
        !           203: *> \par Further Details:
        !           204: *  =====================
        !           205: *>
        !           206: *> \verbatim
        !           207: *>
        !           208: *>  The algorithm used in this program is basically backward (forward)
        !           209: *>  substitution, with scaling to make the the code robust against
        !           210: *>  possible overflow.
        !           211: *>
        !           212: *>  Each eigenvector is normalized so that the element of largest
        !           213: *>  magnitude has magnitude 1; here the magnitude of a complex number
        !           214: *>  (x,y) is taken to be |x| + |y|.
        !           215: *> \endverbatim
        !           216: *>
        !           217: *  =====================================================================
1.1       bertrand  218:       SUBROUTINE ZTREVC( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
                    219:      $                   LDVR, MM, M, WORK, RWORK, INFO )
                    220: *
1.9     ! bertrand  221: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  222: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    223: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  224: *     November 2011
1.1       bertrand  225: *
                    226: *     .. Scalar Arguments ..
                    227:       CHARACTER          HOWMNY, SIDE
                    228:       INTEGER            INFO, LDT, LDVL, LDVR, M, MM, N
                    229: *     ..
                    230: *     .. Array Arguments ..
                    231:       LOGICAL            SELECT( * )
                    232:       DOUBLE PRECISION   RWORK( * )
                    233:       COMPLEX*16         T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
                    234:      $                   WORK( * )
                    235: *     ..
                    236: *
                    237: *  =====================================================================
                    238: *
                    239: *     .. Parameters ..
                    240:       DOUBLE PRECISION   ZERO, ONE
                    241:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    242:       COMPLEX*16         CMZERO, CMONE
                    243:       PARAMETER          ( CMZERO = ( 0.0D+0, 0.0D+0 ),
                    244:      $                   CMONE = ( 1.0D+0, 0.0D+0 ) )
                    245: *     ..
                    246: *     .. Local Scalars ..
                    247:       LOGICAL            ALLV, BOTHV, LEFTV, OVER, RIGHTV, SOMEV
                    248:       INTEGER            I, II, IS, J, K, KI
                    249:       DOUBLE PRECISION   OVFL, REMAX, SCALE, SMIN, SMLNUM, ULP, UNFL
                    250:       COMPLEX*16         CDUM
                    251: *     ..
                    252: *     .. External Functions ..
                    253:       LOGICAL            LSAME
                    254:       INTEGER            IZAMAX
                    255:       DOUBLE PRECISION   DLAMCH, DZASUM
                    256:       EXTERNAL           LSAME, IZAMAX, DLAMCH, DZASUM
                    257: *     ..
                    258: *     .. External Subroutines ..
                    259:       EXTERNAL           XERBLA, ZCOPY, ZDSCAL, ZGEMV, ZLATRS
                    260: *     ..
                    261: *     .. Intrinsic Functions ..
                    262:       INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX
                    263: *     ..
                    264: *     .. Statement Functions ..
                    265:       DOUBLE PRECISION   CABS1
                    266: *     ..
                    267: *     .. Statement Function definitions ..
                    268:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
                    269: *     ..
                    270: *     .. Executable Statements ..
                    271: *
                    272: *     Decode and test the input parameters
                    273: *
                    274:       BOTHV = LSAME( SIDE, 'B' )
                    275:       RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV
                    276:       LEFTV = LSAME( SIDE, 'L' ) .OR. BOTHV
                    277: *
                    278:       ALLV = LSAME( HOWMNY, 'A' )
                    279:       OVER = LSAME( HOWMNY, 'B' )
                    280:       SOMEV = LSAME( HOWMNY, 'S' )
                    281: *
                    282: *     Set M to the number of columns required to store the selected
                    283: *     eigenvectors.
                    284: *
                    285:       IF( SOMEV ) THEN
                    286:          M = 0
                    287:          DO 10 J = 1, N
                    288:             IF( SELECT( J ) )
                    289:      $         M = M + 1
                    290:    10    CONTINUE
                    291:       ELSE
                    292:          M = N
                    293:       END IF
                    294: *
                    295:       INFO = 0
                    296:       IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
                    297:          INFO = -1
                    298:       ELSE IF( .NOT.ALLV .AND. .NOT.OVER .AND. .NOT.SOMEV ) THEN
                    299:          INFO = -2
                    300:       ELSE IF( N.LT.0 ) THEN
                    301:          INFO = -4
                    302:       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
                    303:          INFO = -6
                    304:       ELSE IF( LDVL.LT.1 .OR. ( LEFTV .AND. LDVL.LT.N ) ) THEN
                    305:          INFO = -8
                    306:       ELSE IF( LDVR.LT.1 .OR. ( RIGHTV .AND. LDVR.LT.N ) ) THEN
                    307:          INFO = -10
                    308:       ELSE IF( MM.LT.M ) THEN
                    309:          INFO = -11
                    310:       END IF
                    311:       IF( INFO.NE.0 ) THEN
                    312:          CALL XERBLA( 'ZTREVC', -INFO )
                    313:          RETURN
                    314:       END IF
                    315: *
                    316: *     Quick return if possible.
                    317: *
                    318:       IF( N.EQ.0 )
                    319:      $   RETURN
                    320: *
                    321: *     Set the constants to control overflow.
                    322: *
                    323:       UNFL = DLAMCH( 'Safe minimum' )
                    324:       OVFL = ONE / UNFL
                    325:       CALL DLABAD( UNFL, OVFL )
                    326:       ULP = DLAMCH( 'Precision' )
                    327:       SMLNUM = UNFL*( N / ULP )
                    328: *
                    329: *     Store the diagonal elements of T in working array WORK.
                    330: *
                    331:       DO 20 I = 1, N
                    332:          WORK( I+N ) = T( I, I )
                    333:    20 CONTINUE
                    334: *
                    335: *     Compute 1-norm of each column of strictly upper triangular
                    336: *     part of T to control overflow in triangular solver.
                    337: *
                    338:       RWORK( 1 ) = ZERO
                    339:       DO 30 J = 2, N
                    340:          RWORK( J ) = DZASUM( J-1, T( 1, J ), 1 )
                    341:    30 CONTINUE
                    342: *
                    343:       IF( RIGHTV ) THEN
                    344: *
                    345: *        Compute right eigenvectors.
                    346: *
                    347:          IS = M
                    348:          DO 80 KI = N, 1, -1
                    349: *
                    350:             IF( SOMEV ) THEN
                    351:                IF( .NOT.SELECT( KI ) )
                    352:      $            GO TO 80
                    353:             END IF
                    354:             SMIN = MAX( ULP*( CABS1( T( KI, KI ) ) ), SMLNUM )
                    355: *
                    356:             WORK( 1 ) = CMONE
                    357: *
                    358: *           Form right-hand side.
                    359: *
                    360:             DO 40 K = 1, KI - 1
                    361:                WORK( K ) = -T( K, KI )
                    362:    40       CONTINUE
                    363: *
                    364: *           Solve the triangular system:
                    365: *              (T(1:KI-1,1:KI-1) - T(KI,KI))*X = SCALE*WORK.
                    366: *
                    367:             DO 50 K = 1, KI - 1
                    368:                T( K, K ) = T( K, K ) - T( KI, KI )
                    369:                IF( CABS1( T( K, K ) ).LT.SMIN )
                    370:      $            T( K, K ) = SMIN
                    371:    50       CONTINUE
                    372: *
                    373:             IF( KI.GT.1 ) THEN
                    374:                CALL ZLATRS( 'Upper', 'No transpose', 'Non-unit', 'Y',
                    375:      $                      KI-1, T, LDT, WORK( 1 ), SCALE, RWORK,
                    376:      $                      INFO )
                    377:                WORK( KI ) = SCALE
                    378:             END IF
                    379: *
                    380: *           Copy the vector x or Q*x to VR and normalize.
                    381: *
                    382:             IF( .NOT.OVER ) THEN
                    383:                CALL ZCOPY( KI, WORK( 1 ), 1, VR( 1, IS ), 1 )
                    384: *
                    385:                II = IZAMAX( KI, VR( 1, IS ), 1 )
                    386:                REMAX = ONE / CABS1( VR( II, IS ) )
                    387:                CALL ZDSCAL( KI, REMAX, VR( 1, IS ), 1 )
                    388: *
                    389:                DO 60 K = KI + 1, N
                    390:                   VR( K, IS ) = CMZERO
                    391:    60          CONTINUE
                    392:             ELSE
                    393:                IF( KI.GT.1 )
                    394:      $            CALL ZGEMV( 'N', N, KI-1, CMONE, VR, LDVR, WORK( 1 ),
                    395:      $                        1, DCMPLX( SCALE ), VR( 1, KI ), 1 )
                    396: *
                    397:                II = IZAMAX( N, VR( 1, KI ), 1 )
                    398:                REMAX = ONE / CABS1( VR( II, KI ) )
                    399:                CALL ZDSCAL( N, REMAX, VR( 1, KI ), 1 )
                    400:             END IF
                    401: *
                    402: *           Set back the original diagonal elements of T.
                    403: *
                    404:             DO 70 K = 1, KI - 1
                    405:                T( K, K ) = WORK( K+N )
                    406:    70       CONTINUE
                    407: *
                    408:             IS = IS - 1
                    409:    80    CONTINUE
                    410:       END IF
                    411: *
                    412:       IF( LEFTV ) THEN
                    413: *
                    414: *        Compute left eigenvectors.
                    415: *
                    416:          IS = 1
                    417:          DO 130 KI = 1, N
                    418: *
                    419:             IF( SOMEV ) THEN
                    420:                IF( .NOT.SELECT( KI ) )
                    421:      $            GO TO 130
                    422:             END IF
                    423:             SMIN = MAX( ULP*( CABS1( T( KI, KI ) ) ), SMLNUM )
                    424: *
                    425:             WORK( N ) = CMONE
                    426: *
                    427: *           Form right-hand side.
                    428: *
                    429:             DO 90 K = KI + 1, N
                    430:                WORK( K ) = -DCONJG( T( KI, K ) )
                    431:    90       CONTINUE
                    432: *
                    433: *           Solve the triangular system:
1.8       bertrand  434: *              (T(KI+1:N,KI+1:N) - T(KI,KI))**H * X = SCALE*WORK.
1.1       bertrand  435: *
                    436:             DO 100 K = KI + 1, N
                    437:                T( K, K ) = T( K, K ) - T( KI, KI )
                    438:                IF( CABS1( T( K, K ) ).LT.SMIN )
                    439:      $            T( K, K ) = SMIN
                    440:   100       CONTINUE
                    441: *
                    442:             IF( KI.LT.N ) THEN
                    443:                CALL ZLATRS( 'Upper', 'Conjugate transpose', 'Non-unit',
                    444:      $                      'Y', N-KI, T( KI+1, KI+1 ), LDT,
                    445:      $                      WORK( KI+1 ), SCALE, RWORK, INFO )
                    446:                WORK( KI ) = SCALE
                    447:             END IF
                    448: *
                    449: *           Copy the vector x or Q*x to VL and normalize.
                    450: *
                    451:             IF( .NOT.OVER ) THEN
                    452:                CALL ZCOPY( N-KI+1, WORK( KI ), 1, VL( KI, IS ), 1 )
                    453: *
                    454:                II = IZAMAX( N-KI+1, VL( KI, IS ), 1 ) + KI - 1
                    455:                REMAX = ONE / CABS1( VL( II, IS ) )
                    456:                CALL ZDSCAL( N-KI+1, REMAX, VL( KI, IS ), 1 )
                    457: *
                    458:                DO 110 K = 1, KI - 1
                    459:                   VL( K, IS ) = CMZERO
                    460:   110          CONTINUE
                    461:             ELSE
                    462:                IF( KI.LT.N )
                    463:      $            CALL ZGEMV( 'N', N, N-KI, CMONE, VL( 1, KI+1 ), LDVL,
                    464:      $                        WORK( KI+1 ), 1, DCMPLX( SCALE ),
                    465:      $                        VL( 1, KI ), 1 )
                    466: *
                    467:                II = IZAMAX( N, VL( 1, KI ), 1 )
                    468:                REMAX = ONE / CABS1( VL( II, KI ) )
                    469:                CALL ZDSCAL( N, REMAX, VL( 1, KI ), 1 )
                    470:             END IF
                    471: *
                    472: *           Set back the original diagonal elements of T.
                    473: *
                    474:             DO 120 K = KI + 1, N
                    475:                T( K, K ) = WORK( K+N )
                    476:   120       CONTINUE
                    477: *
                    478:             IS = IS + 1
                    479:   130    CONTINUE
                    480:       END IF
                    481: *
                    482:       RETURN
                    483: *
                    484: *     End of ZTREVC
                    485: *
                    486:       END

CVSweb interface <joel.bertrand@systella.fr>