Annotation of rpl/lapack/lapack/ztrevc.f, revision 1.6

1.1       bertrand    1:       SUBROUTINE ZTREVC( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
                      2:      $                   LDVR, MM, M, WORK, RWORK, INFO )
                      3: *
                      4: *  -- LAPACK routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       CHARACTER          HOWMNY, SIDE
                     11:       INTEGER            INFO, LDT, LDVL, LDVR, M, MM, N
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       LOGICAL            SELECT( * )
                     15:       DOUBLE PRECISION   RWORK( * )
                     16:       COMPLEX*16         T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
                     17:      $                   WORK( * )
                     18: *     ..
                     19: *
                     20: *  Purpose
                     21: *  =======
                     22: *
                     23: *  ZTREVC computes some or all of the right and/or left eigenvectors of
                     24: *  a complex upper triangular matrix T.
                     25: *  Matrices of this type are produced by the Schur factorization of
                     26: *  a complex general matrix:  A = Q*T*Q**H, as computed by ZHSEQR.
                     27: *  
                     28: *  The right eigenvector x and the left eigenvector y of T corresponding
                     29: *  to an eigenvalue w are defined by:
                     30: *  
                     31: *               T*x = w*x,     (y**H)*T = w*(y**H)
                     32: *  
                     33: *  where y**H denotes the conjugate transpose of the vector y.
                     34: *  The eigenvalues are not input to this routine, but are read directly
                     35: *  from the diagonal of T.
                     36: *  
                     37: *  This routine returns the matrices X and/or Y of right and left
                     38: *  eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an
                     39: *  input matrix.  If Q is the unitary factor that reduces a matrix A to
                     40: *  Schur form T, then Q*X and Q*Y are the matrices of right and left
                     41: *  eigenvectors of A.
                     42: *
                     43: *  Arguments
                     44: *  =========
                     45: *
                     46: *  SIDE    (input) CHARACTER*1
                     47: *          = 'R':  compute right eigenvectors only;
                     48: *          = 'L':  compute left eigenvectors only;
                     49: *          = 'B':  compute both right and left eigenvectors.
                     50: *
                     51: *  HOWMNY  (input) CHARACTER*1
                     52: *          = 'A':  compute all right and/or left eigenvectors;
                     53: *          = 'B':  compute all right and/or left eigenvectors,
                     54: *                  backtransformed using the matrices supplied in
                     55: *                  VR and/or VL;
                     56: *          = 'S':  compute selected right and/or left eigenvectors,
                     57: *                  as indicated by the logical array SELECT.
                     58: *
                     59: *  SELECT  (input) LOGICAL array, dimension (N)
                     60: *          If HOWMNY = 'S', SELECT specifies the eigenvectors to be
                     61: *          computed.
                     62: *          The eigenvector corresponding to the j-th eigenvalue is
                     63: *          computed if SELECT(j) = .TRUE..
                     64: *          Not referenced if HOWMNY = 'A' or 'B'.
                     65: *
                     66: *  N       (input) INTEGER
                     67: *          The order of the matrix T. N >= 0.
                     68: *
                     69: *  T       (input/output) COMPLEX*16 array, dimension (LDT,N)
                     70: *          The upper triangular matrix T.  T is modified, but restored
                     71: *          on exit.
                     72: *
                     73: *  LDT     (input) INTEGER
                     74: *          The leading dimension of the array T. LDT >= max(1,N).
                     75: *
                     76: *  VL      (input/output) COMPLEX*16 array, dimension (LDVL,MM)
                     77: *          On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
                     78: *          contain an N-by-N matrix Q (usually the unitary matrix Q of
                     79: *          Schur vectors returned by ZHSEQR).
                     80: *          On exit, if SIDE = 'L' or 'B', VL contains:
                     81: *          if HOWMNY = 'A', the matrix Y of left eigenvectors of T;
                     82: *          if HOWMNY = 'B', the matrix Q*Y;
                     83: *          if HOWMNY = 'S', the left eigenvectors of T specified by
                     84: *                           SELECT, stored consecutively in the columns
                     85: *                           of VL, in the same order as their
                     86: *                           eigenvalues.
                     87: *          Not referenced if SIDE = 'R'.
                     88: *
                     89: *  LDVL    (input) INTEGER
                     90: *          The leading dimension of the array VL.  LDVL >= 1, and if
                     91: *          SIDE = 'L' or 'B', LDVL >= N.
                     92: *
                     93: *  VR      (input/output) COMPLEX*16 array, dimension (LDVR,MM)
                     94: *          On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
                     95: *          contain an N-by-N matrix Q (usually the unitary matrix Q of
                     96: *          Schur vectors returned by ZHSEQR).
                     97: *          On exit, if SIDE = 'R' or 'B', VR contains:
                     98: *          if HOWMNY = 'A', the matrix X of right eigenvectors of T;
                     99: *          if HOWMNY = 'B', the matrix Q*X;
                    100: *          if HOWMNY = 'S', the right eigenvectors of T specified by
                    101: *                           SELECT, stored consecutively in the columns
                    102: *                           of VR, in the same order as their
                    103: *                           eigenvalues.
                    104: *          Not referenced if SIDE = 'L'.
                    105: *
                    106: *  LDVR    (input) INTEGER
                    107: *          The leading dimension of the array VR.  LDVR >= 1, and if
                    108: *          SIDE = 'R' or 'B'; LDVR >= N.
                    109: *
                    110: *  MM      (input) INTEGER
                    111: *          The number of columns in the arrays VL and/or VR. MM >= M.
                    112: *
                    113: *  M       (output) INTEGER
                    114: *          The number of columns in the arrays VL and/or VR actually
                    115: *          used to store the eigenvectors.  If HOWMNY = 'A' or 'B', M
                    116: *          is set to N.  Each selected eigenvector occupies one
                    117: *          column.
                    118: *
                    119: *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
                    120: *
                    121: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
                    122: *
                    123: *  INFO    (output) INTEGER
                    124: *          = 0:  successful exit
                    125: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    126: *
                    127: *  Further Details
                    128: *  ===============
                    129: *
                    130: *  The algorithm used in this program is basically backward (forward)
                    131: *  substitution, with scaling to make the the code robust against
                    132: *  possible overflow.
                    133: *
                    134: *  Each eigenvector is normalized so that the element of largest
                    135: *  magnitude has magnitude 1; here the magnitude of a complex number
                    136: *  (x,y) is taken to be |x| + |y|.
                    137: *
                    138: *  =====================================================================
                    139: *
                    140: *     .. Parameters ..
                    141:       DOUBLE PRECISION   ZERO, ONE
                    142:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    143:       COMPLEX*16         CMZERO, CMONE
                    144:       PARAMETER          ( CMZERO = ( 0.0D+0, 0.0D+0 ),
                    145:      $                   CMONE = ( 1.0D+0, 0.0D+0 ) )
                    146: *     ..
                    147: *     .. Local Scalars ..
                    148:       LOGICAL            ALLV, BOTHV, LEFTV, OVER, RIGHTV, SOMEV
                    149:       INTEGER            I, II, IS, J, K, KI
                    150:       DOUBLE PRECISION   OVFL, REMAX, SCALE, SMIN, SMLNUM, ULP, UNFL
                    151:       COMPLEX*16         CDUM
                    152: *     ..
                    153: *     .. External Functions ..
                    154:       LOGICAL            LSAME
                    155:       INTEGER            IZAMAX
                    156:       DOUBLE PRECISION   DLAMCH, DZASUM
                    157:       EXTERNAL           LSAME, IZAMAX, DLAMCH, DZASUM
                    158: *     ..
                    159: *     .. External Subroutines ..
                    160:       EXTERNAL           XERBLA, ZCOPY, ZDSCAL, ZGEMV, ZLATRS
                    161: *     ..
                    162: *     .. Intrinsic Functions ..
                    163:       INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX
                    164: *     ..
                    165: *     .. Statement Functions ..
                    166:       DOUBLE PRECISION   CABS1
                    167: *     ..
                    168: *     .. Statement Function definitions ..
                    169:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
                    170: *     ..
                    171: *     .. Executable Statements ..
                    172: *
                    173: *     Decode and test the input parameters
                    174: *
                    175:       BOTHV = LSAME( SIDE, 'B' )
                    176:       RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV
                    177:       LEFTV = LSAME( SIDE, 'L' ) .OR. BOTHV
                    178: *
                    179:       ALLV = LSAME( HOWMNY, 'A' )
                    180:       OVER = LSAME( HOWMNY, 'B' )
                    181:       SOMEV = LSAME( HOWMNY, 'S' )
                    182: *
                    183: *     Set M to the number of columns required to store the selected
                    184: *     eigenvectors.
                    185: *
                    186:       IF( SOMEV ) THEN
                    187:          M = 0
                    188:          DO 10 J = 1, N
                    189:             IF( SELECT( J ) )
                    190:      $         M = M + 1
                    191:    10    CONTINUE
                    192:       ELSE
                    193:          M = N
                    194:       END IF
                    195: *
                    196:       INFO = 0
                    197:       IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
                    198:          INFO = -1
                    199:       ELSE IF( .NOT.ALLV .AND. .NOT.OVER .AND. .NOT.SOMEV ) THEN
                    200:          INFO = -2
                    201:       ELSE IF( N.LT.0 ) THEN
                    202:          INFO = -4
                    203:       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
                    204:          INFO = -6
                    205:       ELSE IF( LDVL.LT.1 .OR. ( LEFTV .AND. LDVL.LT.N ) ) THEN
                    206:          INFO = -8
                    207:       ELSE IF( LDVR.LT.1 .OR. ( RIGHTV .AND. LDVR.LT.N ) ) THEN
                    208:          INFO = -10
                    209:       ELSE IF( MM.LT.M ) THEN
                    210:          INFO = -11
                    211:       END IF
                    212:       IF( INFO.NE.0 ) THEN
                    213:          CALL XERBLA( 'ZTREVC', -INFO )
                    214:          RETURN
                    215:       END IF
                    216: *
                    217: *     Quick return if possible.
                    218: *
                    219:       IF( N.EQ.0 )
                    220:      $   RETURN
                    221: *
                    222: *     Set the constants to control overflow.
                    223: *
                    224:       UNFL = DLAMCH( 'Safe minimum' )
                    225:       OVFL = ONE / UNFL
                    226:       CALL DLABAD( UNFL, OVFL )
                    227:       ULP = DLAMCH( 'Precision' )
                    228:       SMLNUM = UNFL*( N / ULP )
                    229: *
                    230: *     Store the diagonal elements of T in working array WORK.
                    231: *
                    232:       DO 20 I = 1, N
                    233:          WORK( I+N ) = T( I, I )
                    234:    20 CONTINUE
                    235: *
                    236: *     Compute 1-norm of each column of strictly upper triangular
                    237: *     part of T to control overflow in triangular solver.
                    238: *
                    239:       RWORK( 1 ) = ZERO
                    240:       DO 30 J = 2, N
                    241:          RWORK( J ) = DZASUM( J-1, T( 1, J ), 1 )
                    242:    30 CONTINUE
                    243: *
                    244:       IF( RIGHTV ) THEN
                    245: *
                    246: *        Compute right eigenvectors.
                    247: *
                    248:          IS = M
                    249:          DO 80 KI = N, 1, -1
                    250: *
                    251:             IF( SOMEV ) THEN
                    252:                IF( .NOT.SELECT( KI ) )
                    253:      $            GO TO 80
                    254:             END IF
                    255:             SMIN = MAX( ULP*( CABS1( T( KI, KI ) ) ), SMLNUM )
                    256: *
                    257:             WORK( 1 ) = CMONE
                    258: *
                    259: *           Form right-hand side.
                    260: *
                    261:             DO 40 K = 1, KI - 1
                    262:                WORK( K ) = -T( K, KI )
                    263:    40       CONTINUE
                    264: *
                    265: *           Solve the triangular system:
                    266: *              (T(1:KI-1,1:KI-1) - T(KI,KI))*X = SCALE*WORK.
                    267: *
                    268:             DO 50 K = 1, KI - 1
                    269:                T( K, K ) = T( K, K ) - T( KI, KI )
                    270:                IF( CABS1( T( K, K ) ).LT.SMIN )
                    271:      $            T( K, K ) = SMIN
                    272:    50       CONTINUE
                    273: *
                    274:             IF( KI.GT.1 ) THEN
                    275:                CALL ZLATRS( 'Upper', 'No transpose', 'Non-unit', 'Y',
                    276:      $                      KI-1, T, LDT, WORK( 1 ), SCALE, RWORK,
                    277:      $                      INFO )
                    278:                WORK( KI ) = SCALE
                    279:             END IF
                    280: *
                    281: *           Copy the vector x or Q*x to VR and normalize.
                    282: *
                    283:             IF( .NOT.OVER ) THEN
                    284:                CALL ZCOPY( KI, WORK( 1 ), 1, VR( 1, IS ), 1 )
                    285: *
                    286:                II = IZAMAX( KI, VR( 1, IS ), 1 )
                    287:                REMAX = ONE / CABS1( VR( II, IS ) )
                    288:                CALL ZDSCAL( KI, REMAX, VR( 1, IS ), 1 )
                    289: *
                    290:                DO 60 K = KI + 1, N
                    291:                   VR( K, IS ) = CMZERO
                    292:    60          CONTINUE
                    293:             ELSE
                    294:                IF( KI.GT.1 )
                    295:      $            CALL ZGEMV( 'N', N, KI-1, CMONE, VR, LDVR, WORK( 1 ),
                    296:      $                        1, DCMPLX( SCALE ), VR( 1, KI ), 1 )
                    297: *
                    298:                II = IZAMAX( N, VR( 1, KI ), 1 )
                    299:                REMAX = ONE / CABS1( VR( II, KI ) )
                    300:                CALL ZDSCAL( N, REMAX, VR( 1, KI ), 1 )
                    301:             END IF
                    302: *
                    303: *           Set back the original diagonal elements of T.
                    304: *
                    305:             DO 70 K = 1, KI - 1
                    306:                T( K, K ) = WORK( K+N )
                    307:    70       CONTINUE
                    308: *
                    309:             IS = IS - 1
                    310:    80    CONTINUE
                    311:       END IF
                    312: *
                    313:       IF( LEFTV ) THEN
                    314: *
                    315: *        Compute left eigenvectors.
                    316: *
                    317:          IS = 1
                    318:          DO 130 KI = 1, N
                    319: *
                    320:             IF( SOMEV ) THEN
                    321:                IF( .NOT.SELECT( KI ) )
                    322:      $            GO TO 130
                    323:             END IF
                    324:             SMIN = MAX( ULP*( CABS1( T( KI, KI ) ) ), SMLNUM )
                    325: *
                    326:             WORK( N ) = CMONE
                    327: *
                    328: *           Form right-hand side.
                    329: *
                    330:             DO 90 K = KI + 1, N
                    331:                WORK( K ) = -DCONJG( T( KI, K ) )
                    332:    90       CONTINUE
                    333: *
                    334: *           Solve the triangular system:
                    335: *              (T(KI+1:N,KI+1:N) - T(KI,KI))'*X = SCALE*WORK.
                    336: *
                    337:             DO 100 K = KI + 1, N
                    338:                T( K, K ) = T( K, K ) - T( KI, KI )
                    339:                IF( CABS1( T( K, K ) ).LT.SMIN )
                    340:      $            T( K, K ) = SMIN
                    341:   100       CONTINUE
                    342: *
                    343:             IF( KI.LT.N ) THEN
                    344:                CALL ZLATRS( 'Upper', 'Conjugate transpose', 'Non-unit',
                    345:      $                      'Y', N-KI, T( KI+1, KI+1 ), LDT,
                    346:      $                      WORK( KI+1 ), SCALE, RWORK, INFO )
                    347:                WORK( KI ) = SCALE
                    348:             END IF
                    349: *
                    350: *           Copy the vector x or Q*x to VL and normalize.
                    351: *
                    352:             IF( .NOT.OVER ) THEN
                    353:                CALL ZCOPY( N-KI+1, WORK( KI ), 1, VL( KI, IS ), 1 )
                    354: *
                    355:                II = IZAMAX( N-KI+1, VL( KI, IS ), 1 ) + KI - 1
                    356:                REMAX = ONE / CABS1( VL( II, IS ) )
                    357:                CALL ZDSCAL( N-KI+1, REMAX, VL( KI, IS ), 1 )
                    358: *
                    359:                DO 110 K = 1, KI - 1
                    360:                   VL( K, IS ) = CMZERO
                    361:   110          CONTINUE
                    362:             ELSE
                    363:                IF( KI.LT.N )
                    364:      $            CALL ZGEMV( 'N', N, N-KI, CMONE, VL( 1, KI+1 ), LDVL,
                    365:      $                        WORK( KI+1 ), 1, DCMPLX( SCALE ),
                    366:      $                        VL( 1, KI ), 1 )
                    367: *
                    368:                II = IZAMAX( N, VL( 1, KI ), 1 )
                    369:                REMAX = ONE / CABS1( VL( II, KI ) )
                    370:                CALL ZDSCAL( N, REMAX, VL( 1, KI ), 1 )
                    371:             END IF
                    372: *
                    373: *           Set back the original diagonal elements of T.
                    374: *
                    375:             DO 120 K = KI + 1, N
                    376:                T( K, K ) = WORK( K+N )
                    377:   120       CONTINUE
                    378: *
                    379:             IS = IS + 1
                    380:   130    CONTINUE
                    381:       END IF
                    382: *
                    383:       RETURN
                    384: *
                    385: *     End of ZTREVC
                    386: *
                    387:       END

CVSweb interface <joel.bertrand@systella.fr>