Annotation of rpl/lapack/lapack/ztrevc.f, revision 1.16

1.9       bertrand    1: *> \brief \b ZTREVC
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download ZTREVC + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztrevc.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztrevc.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztrevc.f">
1.9       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZTREVC( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
                     22: *                          LDVR, MM, M, WORK, RWORK, INFO )
1.15      bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          HOWMNY, SIDE
                     26: *       INTEGER            INFO, LDT, LDVL, LDVR, M, MM, N
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       LOGICAL            SELECT( * )
                     30: *       DOUBLE PRECISION   RWORK( * )
                     31: *       COMPLEX*16         T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
                     32: *      $                   WORK( * )
                     33: *       ..
1.15      bertrand   34: *
1.9       bertrand   35: *
                     36: *> \par Purpose:
                     37: *  =============
                     38: *>
                     39: *> \verbatim
                     40: *>
                     41: *> ZTREVC computes some or all of the right and/or left eigenvectors of
                     42: *> a complex upper triangular matrix T.
                     43: *> Matrices of this type are produced by the Schur factorization of
                     44: *> a complex general matrix:  A = Q*T*Q**H, as computed by ZHSEQR.
1.15      bertrand   45: *>
1.9       bertrand   46: *> The right eigenvector x and the left eigenvector y of T corresponding
                     47: *> to an eigenvalue w are defined by:
1.15      bertrand   48: *>
1.9       bertrand   49: *>              T*x = w*x,     (y**H)*T = w*(y**H)
1.15      bertrand   50: *>
1.9       bertrand   51: *> where y**H denotes the conjugate transpose of the vector y.
                     52: *> The eigenvalues are not input to this routine, but are read directly
                     53: *> from the diagonal of T.
1.15      bertrand   54: *>
1.9       bertrand   55: *> This routine returns the matrices X and/or Y of right and left
                     56: *> eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an
                     57: *> input matrix.  If Q is the unitary factor that reduces a matrix A to
                     58: *> Schur form T, then Q*X and Q*Y are the matrices of right and left
                     59: *> eigenvectors of A.
                     60: *> \endverbatim
                     61: *
                     62: *  Arguments:
                     63: *  ==========
                     64: *
                     65: *> \param[in] SIDE
                     66: *> \verbatim
                     67: *>          SIDE is CHARACTER*1
                     68: *>          = 'R':  compute right eigenvectors only;
                     69: *>          = 'L':  compute left eigenvectors only;
                     70: *>          = 'B':  compute both right and left eigenvectors.
                     71: *> \endverbatim
                     72: *>
                     73: *> \param[in] HOWMNY
                     74: *> \verbatim
                     75: *>          HOWMNY is CHARACTER*1
                     76: *>          = 'A':  compute all right and/or left eigenvectors;
                     77: *>          = 'B':  compute all right and/or left eigenvectors,
                     78: *>                  backtransformed using the matrices supplied in
                     79: *>                  VR and/or VL;
                     80: *>          = 'S':  compute selected right and/or left eigenvectors,
                     81: *>                  as indicated by the logical array SELECT.
                     82: *> \endverbatim
                     83: *>
                     84: *> \param[in] SELECT
                     85: *> \verbatim
                     86: *>          SELECT is LOGICAL array, dimension (N)
                     87: *>          If HOWMNY = 'S', SELECT specifies the eigenvectors to be
                     88: *>          computed.
                     89: *>          The eigenvector corresponding to the j-th eigenvalue is
                     90: *>          computed if SELECT(j) = .TRUE..
                     91: *>          Not referenced if HOWMNY = 'A' or 'B'.
                     92: *> \endverbatim
                     93: *>
                     94: *> \param[in] N
                     95: *> \verbatim
                     96: *>          N is INTEGER
                     97: *>          The order of the matrix T. N >= 0.
                     98: *> \endverbatim
                     99: *>
                    100: *> \param[in,out] T
                    101: *> \verbatim
                    102: *>          T is COMPLEX*16 array, dimension (LDT,N)
                    103: *>          The upper triangular matrix T.  T is modified, but restored
                    104: *>          on exit.
                    105: *> \endverbatim
                    106: *>
                    107: *> \param[in] LDT
                    108: *> \verbatim
                    109: *>          LDT is INTEGER
                    110: *>          The leading dimension of the array T. LDT >= max(1,N).
                    111: *> \endverbatim
                    112: *>
                    113: *> \param[in,out] VL
                    114: *> \verbatim
                    115: *>          VL is COMPLEX*16 array, dimension (LDVL,MM)
                    116: *>          On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
                    117: *>          contain an N-by-N matrix Q (usually the unitary matrix Q of
                    118: *>          Schur vectors returned by ZHSEQR).
                    119: *>          On exit, if SIDE = 'L' or 'B', VL contains:
                    120: *>          if HOWMNY = 'A', the matrix Y of left eigenvectors of T;
                    121: *>          if HOWMNY = 'B', the matrix Q*Y;
                    122: *>          if HOWMNY = 'S', the left eigenvectors of T specified by
                    123: *>                           SELECT, stored consecutively in the columns
                    124: *>                           of VL, in the same order as their
                    125: *>                           eigenvalues.
                    126: *>          Not referenced if SIDE = 'R'.
                    127: *> \endverbatim
                    128: *>
                    129: *> \param[in] LDVL
                    130: *> \verbatim
                    131: *>          LDVL is INTEGER
                    132: *>          The leading dimension of the array VL.  LDVL >= 1, and if
                    133: *>          SIDE = 'L' or 'B', LDVL >= N.
                    134: *> \endverbatim
                    135: *>
                    136: *> \param[in,out] VR
                    137: *> \verbatim
                    138: *>          VR is COMPLEX*16 array, dimension (LDVR,MM)
                    139: *>          On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
                    140: *>          contain an N-by-N matrix Q (usually the unitary matrix Q of
                    141: *>          Schur vectors returned by ZHSEQR).
                    142: *>          On exit, if SIDE = 'R' or 'B', VR contains:
                    143: *>          if HOWMNY = 'A', the matrix X of right eigenvectors of T;
                    144: *>          if HOWMNY = 'B', the matrix Q*X;
                    145: *>          if HOWMNY = 'S', the right eigenvectors of T specified by
                    146: *>                           SELECT, stored consecutively in the columns
                    147: *>                           of VR, in the same order as their
                    148: *>                           eigenvalues.
                    149: *>          Not referenced if SIDE = 'L'.
                    150: *> \endverbatim
                    151: *>
                    152: *> \param[in] LDVR
                    153: *> \verbatim
                    154: *>          LDVR is INTEGER
                    155: *>          The leading dimension of the array VR.  LDVR >= 1, and if
                    156: *>          SIDE = 'R' or 'B'; LDVR >= N.
                    157: *> \endverbatim
                    158: *>
                    159: *> \param[in] MM
                    160: *> \verbatim
                    161: *>          MM is INTEGER
                    162: *>          The number of columns in the arrays VL and/or VR. MM >= M.
                    163: *> \endverbatim
                    164: *>
                    165: *> \param[out] M
                    166: *> \verbatim
                    167: *>          M is INTEGER
                    168: *>          The number of columns in the arrays VL and/or VR actually
                    169: *>          used to store the eigenvectors.  If HOWMNY = 'A' or 'B', M
                    170: *>          is set to N.  Each selected eigenvector occupies one
                    171: *>          column.
                    172: *> \endverbatim
                    173: *>
                    174: *> \param[out] WORK
                    175: *> \verbatim
                    176: *>          WORK is COMPLEX*16 array, dimension (2*N)
                    177: *> \endverbatim
                    178: *>
                    179: *> \param[out] RWORK
                    180: *> \verbatim
                    181: *>          RWORK is DOUBLE PRECISION array, dimension (N)
                    182: *> \endverbatim
                    183: *>
                    184: *> \param[out] INFO
                    185: *> \verbatim
                    186: *>          INFO is INTEGER
                    187: *>          = 0:  successful exit
                    188: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    189: *> \endverbatim
                    190: *
                    191: *  Authors:
                    192: *  ========
                    193: *
1.15      bertrand  194: *> \author Univ. of Tennessee
                    195: *> \author Univ. of California Berkeley
                    196: *> \author Univ. of Colorado Denver
                    197: *> \author NAG Ltd.
1.9       bertrand  198: *
1.15      bertrand  199: *> \date December 2016
1.9       bertrand  200: *
                    201: *> \ingroup complex16OTHERcomputational
                    202: *
                    203: *> \par Further Details:
                    204: *  =====================
                    205: *>
                    206: *> \verbatim
                    207: *>
                    208: *>  The algorithm used in this program is basically backward (forward)
                    209: *>  substitution, with scaling to make the the code robust against
                    210: *>  possible overflow.
                    211: *>
                    212: *>  Each eigenvector is normalized so that the element of largest
                    213: *>  magnitude has magnitude 1; here the magnitude of a complex number
                    214: *>  (x,y) is taken to be |x| + |y|.
                    215: *> \endverbatim
                    216: *>
                    217: *  =====================================================================
1.1       bertrand  218:       SUBROUTINE ZTREVC( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
                    219:      $                   LDVR, MM, M, WORK, RWORK, INFO )
                    220: *
1.15      bertrand  221: *  -- LAPACK computational routine (version 3.7.0) --
1.1       bertrand  222: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    223: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.15      bertrand  224: *     December 2016
1.1       bertrand  225: *
                    226: *     .. Scalar Arguments ..
                    227:       CHARACTER          HOWMNY, SIDE
                    228:       INTEGER            INFO, LDT, LDVL, LDVR, M, MM, N
                    229: *     ..
                    230: *     .. Array Arguments ..
                    231:       LOGICAL            SELECT( * )
                    232:       DOUBLE PRECISION   RWORK( * )
                    233:       COMPLEX*16         T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
                    234:      $                   WORK( * )
                    235: *     ..
                    236: *
                    237: *  =====================================================================
                    238: *
                    239: *     .. Parameters ..
                    240:       DOUBLE PRECISION   ZERO, ONE
                    241:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    242:       COMPLEX*16         CMZERO, CMONE
                    243:       PARAMETER          ( CMZERO = ( 0.0D+0, 0.0D+0 ),
                    244:      $                   CMONE = ( 1.0D+0, 0.0D+0 ) )
                    245: *     ..
                    246: *     .. Local Scalars ..
                    247:       LOGICAL            ALLV, BOTHV, LEFTV, OVER, RIGHTV, SOMEV
                    248:       INTEGER            I, II, IS, J, K, KI
                    249:       DOUBLE PRECISION   OVFL, REMAX, SCALE, SMIN, SMLNUM, ULP, UNFL
                    250:       COMPLEX*16         CDUM
                    251: *     ..
                    252: *     .. External Functions ..
                    253:       LOGICAL            LSAME
                    254:       INTEGER            IZAMAX
                    255:       DOUBLE PRECISION   DLAMCH, DZASUM
                    256:       EXTERNAL           LSAME, IZAMAX, DLAMCH, DZASUM
                    257: *     ..
                    258: *     .. External Subroutines ..
                    259:       EXTERNAL           XERBLA, ZCOPY, ZDSCAL, ZGEMV, ZLATRS
                    260: *     ..
                    261: *     .. Intrinsic Functions ..
                    262:       INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX
                    263: *     ..
                    264: *     .. Statement Functions ..
                    265:       DOUBLE PRECISION   CABS1
                    266: *     ..
                    267: *     .. Statement Function definitions ..
                    268:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
                    269: *     ..
                    270: *     .. Executable Statements ..
                    271: *
                    272: *     Decode and test the input parameters
                    273: *
                    274:       BOTHV = LSAME( SIDE, 'B' )
                    275:       RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV
                    276:       LEFTV = LSAME( SIDE, 'L' ) .OR. BOTHV
                    277: *
                    278:       ALLV = LSAME( HOWMNY, 'A' )
                    279:       OVER = LSAME( HOWMNY, 'B' )
                    280:       SOMEV = LSAME( HOWMNY, 'S' )
                    281: *
                    282: *     Set M to the number of columns required to store the selected
                    283: *     eigenvectors.
                    284: *
                    285:       IF( SOMEV ) THEN
                    286:          M = 0
                    287:          DO 10 J = 1, N
                    288:             IF( SELECT( J ) )
                    289:      $         M = M + 1
                    290:    10    CONTINUE
                    291:       ELSE
                    292:          M = N
                    293:       END IF
                    294: *
                    295:       INFO = 0
                    296:       IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
                    297:          INFO = -1
                    298:       ELSE IF( .NOT.ALLV .AND. .NOT.OVER .AND. .NOT.SOMEV ) THEN
                    299:          INFO = -2
                    300:       ELSE IF( N.LT.0 ) THEN
                    301:          INFO = -4
                    302:       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
                    303:          INFO = -6
                    304:       ELSE IF( LDVL.LT.1 .OR. ( LEFTV .AND. LDVL.LT.N ) ) THEN
                    305:          INFO = -8
                    306:       ELSE IF( LDVR.LT.1 .OR. ( RIGHTV .AND. LDVR.LT.N ) ) THEN
                    307:          INFO = -10
                    308:       ELSE IF( MM.LT.M ) THEN
                    309:          INFO = -11
                    310:       END IF
                    311:       IF( INFO.NE.0 ) THEN
                    312:          CALL XERBLA( 'ZTREVC', -INFO )
                    313:          RETURN
                    314:       END IF
                    315: *
                    316: *     Quick return if possible.
                    317: *
                    318:       IF( N.EQ.0 )
                    319:      $   RETURN
                    320: *
                    321: *     Set the constants to control overflow.
                    322: *
                    323:       UNFL = DLAMCH( 'Safe minimum' )
                    324:       OVFL = ONE / UNFL
                    325:       CALL DLABAD( UNFL, OVFL )
                    326:       ULP = DLAMCH( 'Precision' )
                    327:       SMLNUM = UNFL*( N / ULP )
                    328: *
                    329: *     Store the diagonal elements of T in working array WORK.
                    330: *
                    331:       DO 20 I = 1, N
                    332:          WORK( I+N ) = T( I, I )
                    333:    20 CONTINUE
                    334: *
                    335: *     Compute 1-norm of each column of strictly upper triangular
                    336: *     part of T to control overflow in triangular solver.
                    337: *
                    338:       RWORK( 1 ) = ZERO
                    339:       DO 30 J = 2, N
                    340:          RWORK( J ) = DZASUM( J-1, T( 1, J ), 1 )
                    341:    30 CONTINUE
                    342: *
                    343:       IF( RIGHTV ) THEN
                    344: *
                    345: *        Compute right eigenvectors.
                    346: *
                    347:          IS = M
                    348:          DO 80 KI = N, 1, -1
                    349: *
                    350:             IF( SOMEV ) THEN
                    351:                IF( .NOT.SELECT( KI ) )
                    352:      $            GO TO 80
                    353:             END IF
                    354:             SMIN = MAX( ULP*( CABS1( T( KI, KI ) ) ), SMLNUM )
                    355: *
                    356:             WORK( 1 ) = CMONE
                    357: *
                    358: *           Form right-hand side.
                    359: *
                    360:             DO 40 K = 1, KI - 1
                    361:                WORK( K ) = -T( K, KI )
                    362:    40       CONTINUE
                    363: *
                    364: *           Solve the triangular system:
                    365: *              (T(1:KI-1,1:KI-1) - T(KI,KI))*X = SCALE*WORK.
                    366: *
                    367:             DO 50 K = 1, KI - 1
                    368:                T( K, K ) = T( K, K ) - T( KI, KI )
                    369:                IF( CABS1( T( K, K ) ).LT.SMIN )
                    370:      $            T( K, K ) = SMIN
                    371:    50       CONTINUE
                    372: *
                    373:             IF( KI.GT.1 ) THEN
                    374:                CALL ZLATRS( 'Upper', 'No transpose', 'Non-unit', 'Y',
                    375:      $                      KI-1, T, LDT, WORK( 1 ), SCALE, RWORK,
                    376:      $                      INFO )
                    377:                WORK( KI ) = SCALE
                    378:             END IF
                    379: *
                    380: *           Copy the vector x or Q*x to VR and normalize.
                    381: *
                    382:             IF( .NOT.OVER ) THEN
                    383:                CALL ZCOPY( KI, WORK( 1 ), 1, VR( 1, IS ), 1 )
                    384: *
                    385:                II = IZAMAX( KI, VR( 1, IS ), 1 )
                    386:                REMAX = ONE / CABS1( VR( II, IS ) )
                    387:                CALL ZDSCAL( KI, REMAX, VR( 1, IS ), 1 )
                    388: *
                    389:                DO 60 K = KI + 1, N
                    390:                   VR( K, IS ) = CMZERO
                    391:    60          CONTINUE
                    392:             ELSE
                    393:                IF( KI.GT.1 )
                    394:      $            CALL ZGEMV( 'N', N, KI-1, CMONE, VR, LDVR, WORK( 1 ),
                    395:      $                        1, DCMPLX( SCALE ), VR( 1, KI ), 1 )
                    396: *
                    397:                II = IZAMAX( N, VR( 1, KI ), 1 )
                    398:                REMAX = ONE / CABS1( VR( II, KI ) )
                    399:                CALL ZDSCAL( N, REMAX, VR( 1, KI ), 1 )
                    400:             END IF
                    401: *
                    402: *           Set back the original diagonal elements of T.
                    403: *
                    404:             DO 70 K = 1, KI - 1
                    405:                T( K, K ) = WORK( K+N )
                    406:    70       CONTINUE
                    407: *
                    408:             IS = IS - 1
                    409:    80    CONTINUE
                    410:       END IF
                    411: *
                    412:       IF( LEFTV ) THEN
                    413: *
                    414: *        Compute left eigenvectors.
                    415: *
                    416:          IS = 1
                    417:          DO 130 KI = 1, N
                    418: *
                    419:             IF( SOMEV ) THEN
                    420:                IF( .NOT.SELECT( KI ) )
                    421:      $            GO TO 130
                    422:             END IF
                    423:             SMIN = MAX( ULP*( CABS1( T( KI, KI ) ) ), SMLNUM )
                    424: *
                    425:             WORK( N ) = CMONE
                    426: *
                    427: *           Form right-hand side.
                    428: *
                    429:             DO 90 K = KI + 1, N
                    430:                WORK( K ) = -DCONJG( T( KI, K ) )
                    431:    90       CONTINUE
                    432: *
                    433: *           Solve the triangular system:
1.8       bertrand  434: *              (T(KI+1:N,KI+1:N) - T(KI,KI))**H * X = SCALE*WORK.
1.1       bertrand  435: *
                    436:             DO 100 K = KI + 1, N
                    437:                T( K, K ) = T( K, K ) - T( KI, KI )
                    438:                IF( CABS1( T( K, K ) ).LT.SMIN )
                    439:      $            T( K, K ) = SMIN
                    440:   100       CONTINUE
                    441: *
                    442:             IF( KI.LT.N ) THEN
                    443:                CALL ZLATRS( 'Upper', 'Conjugate transpose', 'Non-unit',
                    444:      $                      'Y', N-KI, T( KI+1, KI+1 ), LDT,
                    445:      $                      WORK( KI+1 ), SCALE, RWORK, INFO )
                    446:                WORK( KI ) = SCALE
                    447:             END IF
                    448: *
                    449: *           Copy the vector x or Q*x to VL and normalize.
                    450: *
                    451:             IF( .NOT.OVER ) THEN
                    452:                CALL ZCOPY( N-KI+1, WORK( KI ), 1, VL( KI, IS ), 1 )
                    453: *
                    454:                II = IZAMAX( N-KI+1, VL( KI, IS ), 1 ) + KI - 1
                    455:                REMAX = ONE / CABS1( VL( II, IS ) )
                    456:                CALL ZDSCAL( N-KI+1, REMAX, VL( KI, IS ), 1 )
                    457: *
                    458:                DO 110 K = 1, KI - 1
                    459:                   VL( K, IS ) = CMZERO
                    460:   110          CONTINUE
                    461:             ELSE
                    462:                IF( KI.LT.N )
                    463:      $            CALL ZGEMV( 'N', N, N-KI, CMONE, VL( 1, KI+1 ), LDVL,
                    464:      $                        WORK( KI+1 ), 1, DCMPLX( SCALE ),
                    465:      $                        VL( 1, KI ), 1 )
                    466: *
                    467:                II = IZAMAX( N, VL( 1, KI ), 1 )
                    468:                REMAX = ONE / CABS1( VL( II, KI ) )
                    469:                CALL ZDSCAL( N, REMAX, VL( 1, KI ), 1 )
                    470:             END IF
                    471: *
                    472: *           Set back the original diagonal elements of T.
                    473: *
                    474:             DO 120 K = KI + 1, N
                    475:                T( K, K ) = WORK( K+N )
                    476:   120       CONTINUE
                    477: *
                    478:             IS = IS + 1
                    479:   130    CONTINUE
                    480:       END IF
                    481: *
                    482:       RETURN
                    483: *
                    484: *     End of ZTREVC
                    485: *
                    486:       END

CVSweb interface <joel.bertrand@systella.fr>