Annotation of rpl/lapack/lapack/ztrevc.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZTREVC( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
        !             2:      $                   LDVR, MM, M, WORK, RWORK, INFO )
        !             3: *
        !             4: *  -- LAPACK routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       CHARACTER          HOWMNY, SIDE
        !            11:       INTEGER            INFO, LDT, LDVL, LDVR, M, MM, N
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       LOGICAL            SELECT( * )
        !            15:       DOUBLE PRECISION   RWORK( * )
        !            16:       COMPLEX*16         T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
        !            17:      $                   WORK( * )
        !            18: *     ..
        !            19: *
        !            20: *  Purpose
        !            21: *  =======
        !            22: *
        !            23: *  ZTREVC computes some or all of the right and/or left eigenvectors of
        !            24: *  a complex upper triangular matrix T.
        !            25: *  Matrices of this type are produced by the Schur factorization of
        !            26: *  a complex general matrix:  A = Q*T*Q**H, as computed by ZHSEQR.
        !            27: *  
        !            28: *  The right eigenvector x and the left eigenvector y of T corresponding
        !            29: *  to an eigenvalue w are defined by:
        !            30: *  
        !            31: *               T*x = w*x,     (y**H)*T = w*(y**H)
        !            32: *  
        !            33: *  where y**H denotes the conjugate transpose of the vector y.
        !            34: *  The eigenvalues are not input to this routine, but are read directly
        !            35: *  from the diagonal of T.
        !            36: *  
        !            37: *  This routine returns the matrices X and/or Y of right and left
        !            38: *  eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an
        !            39: *  input matrix.  If Q is the unitary factor that reduces a matrix A to
        !            40: *  Schur form T, then Q*X and Q*Y are the matrices of right and left
        !            41: *  eigenvectors of A.
        !            42: *
        !            43: *  Arguments
        !            44: *  =========
        !            45: *
        !            46: *  SIDE    (input) CHARACTER*1
        !            47: *          = 'R':  compute right eigenvectors only;
        !            48: *          = 'L':  compute left eigenvectors only;
        !            49: *          = 'B':  compute both right and left eigenvectors.
        !            50: *
        !            51: *  HOWMNY  (input) CHARACTER*1
        !            52: *          = 'A':  compute all right and/or left eigenvectors;
        !            53: *          = 'B':  compute all right and/or left eigenvectors,
        !            54: *                  backtransformed using the matrices supplied in
        !            55: *                  VR and/or VL;
        !            56: *          = 'S':  compute selected right and/or left eigenvectors,
        !            57: *                  as indicated by the logical array SELECT.
        !            58: *
        !            59: *  SELECT  (input) LOGICAL array, dimension (N)
        !            60: *          If HOWMNY = 'S', SELECT specifies the eigenvectors to be
        !            61: *          computed.
        !            62: *          The eigenvector corresponding to the j-th eigenvalue is
        !            63: *          computed if SELECT(j) = .TRUE..
        !            64: *          Not referenced if HOWMNY = 'A' or 'B'.
        !            65: *
        !            66: *  N       (input) INTEGER
        !            67: *          The order of the matrix T. N >= 0.
        !            68: *
        !            69: *  T       (input/output) COMPLEX*16 array, dimension (LDT,N)
        !            70: *          The upper triangular matrix T.  T is modified, but restored
        !            71: *          on exit.
        !            72: *
        !            73: *  LDT     (input) INTEGER
        !            74: *          The leading dimension of the array T. LDT >= max(1,N).
        !            75: *
        !            76: *  VL      (input/output) COMPLEX*16 array, dimension (LDVL,MM)
        !            77: *          On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
        !            78: *          contain an N-by-N matrix Q (usually the unitary matrix Q of
        !            79: *          Schur vectors returned by ZHSEQR).
        !            80: *          On exit, if SIDE = 'L' or 'B', VL contains:
        !            81: *          if HOWMNY = 'A', the matrix Y of left eigenvectors of T;
        !            82: *          if HOWMNY = 'B', the matrix Q*Y;
        !            83: *          if HOWMNY = 'S', the left eigenvectors of T specified by
        !            84: *                           SELECT, stored consecutively in the columns
        !            85: *                           of VL, in the same order as their
        !            86: *                           eigenvalues.
        !            87: *          Not referenced if SIDE = 'R'.
        !            88: *
        !            89: *  LDVL    (input) INTEGER
        !            90: *          The leading dimension of the array VL.  LDVL >= 1, and if
        !            91: *          SIDE = 'L' or 'B', LDVL >= N.
        !            92: *
        !            93: *  VR      (input/output) COMPLEX*16 array, dimension (LDVR,MM)
        !            94: *          On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
        !            95: *          contain an N-by-N matrix Q (usually the unitary matrix Q of
        !            96: *          Schur vectors returned by ZHSEQR).
        !            97: *          On exit, if SIDE = 'R' or 'B', VR contains:
        !            98: *          if HOWMNY = 'A', the matrix X of right eigenvectors of T;
        !            99: *          if HOWMNY = 'B', the matrix Q*X;
        !           100: *          if HOWMNY = 'S', the right eigenvectors of T specified by
        !           101: *                           SELECT, stored consecutively in the columns
        !           102: *                           of VR, in the same order as their
        !           103: *                           eigenvalues.
        !           104: *          Not referenced if SIDE = 'L'.
        !           105: *
        !           106: *  LDVR    (input) INTEGER
        !           107: *          The leading dimension of the array VR.  LDVR >= 1, and if
        !           108: *          SIDE = 'R' or 'B'; LDVR >= N.
        !           109: *
        !           110: *  MM      (input) INTEGER
        !           111: *          The number of columns in the arrays VL and/or VR. MM >= M.
        !           112: *
        !           113: *  M       (output) INTEGER
        !           114: *          The number of columns in the arrays VL and/or VR actually
        !           115: *          used to store the eigenvectors.  If HOWMNY = 'A' or 'B', M
        !           116: *          is set to N.  Each selected eigenvector occupies one
        !           117: *          column.
        !           118: *
        !           119: *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
        !           120: *
        !           121: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
        !           122: *
        !           123: *  INFO    (output) INTEGER
        !           124: *          = 0:  successful exit
        !           125: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           126: *
        !           127: *  Further Details
        !           128: *  ===============
        !           129: *
        !           130: *  The algorithm used in this program is basically backward (forward)
        !           131: *  substitution, with scaling to make the the code robust against
        !           132: *  possible overflow.
        !           133: *
        !           134: *  Each eigenvector is normalized so that the element of largest
        !           135: *  magnitude has magnitude 1; here the magnitude of a complex number
        !           136: *  (x,y) is taken to be |x| + |y|.
        !           137: *
        !           138: *  =====================================================================
        !           139: *
        !           140: *     .. Parameters ..
        !           141:       DOUBLE PRECISION   ZERO, ONE
        !           142:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
        !           143:       COMPLEX*16         CMZERO, CMONE
        !           144:       PARAMETER          ( CMZERO = ( 0.0D+0, 0.0D+0 ),
        !           145:      $                   CMONE = ( 1.0D+0, 0.0D+0 ) )
        !           146: *     ..
        !           147: *     .. Local Scalars ..
        !           148:       LOGICAL            ALLV, BOTHV, LEFTV, OVER, RIGHTV, SOMEV
        !           149:       INTEGER            I, II, IS, J, K, KI
        !           150:       DOUBLE PRECISION   OVFL, REMAX, SCALE, SMIN, SMLNUM, ULP, UNFL
        !           151:       COMPLEX*16         CDUM
        !           152: *     ..
        !           153: *     .. External Functions ..
        !           154:       LOGICAL            LSAME
        !           155:       INTEGER            IZAMAX
        !           156:       DOUBLE PRECISION   DLAMCH, DZASUM
        !           157:       EXTERNAL           LSAME, IZAMAX, DLAMCH, DZASUM
        !           158: *     ..
        !           159: *     .. External Subroutines ..
        !           160:       EXTERNAL           XERBLA, ZCOPY, ZDSCAL, ZGEMV, ZLATRS
        !           161: *     ..
        !           162: *     .. Intrinsic Functions ..
        !           163:       INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX
        !           164: *     ..
        !           165: *     .. Statement Functions ..
        !           166:       DOUBLE PRECISION   CABS1
        !           167: *     ..
        !           168: *     .. Statement Function definitions ..
        !           169:       CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) )
        !           170: *     ..
        !           171: *     .. Executable Statements ..
        !           172: *
        !           173: *     Decode and test the input parameters
        !           174: *
        !           175:       BOTHV = LSAME( SIDE, 'B' )
        !           176:       RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV
        !           177:       LEFTV = LSAME( SIDE, 'L' ) .OR. BOTHV
        !           178: *
        !           179:       ALLV = LSAME( HOWMNY, 'A' )
        !           180:       OVER = LSAME( HOWMNY, 'B' )
        !           181:       SOMEV = LSAME( HOWMNY, 'S' )
        !           182: *
        !           183: *     Set M to the number of columns required to store the selected
        !           184: *     eigenvectors.
        !           185: *
        !           186:       IF( SOMEV ) THEN
        !           187:          M = 0
        !           188:          DO 10 J = 1, N
        !           189:             IF( SELECT( J ) )
        !           190:      $         M = M + 1
        !           191:    10    CONTINUE
        !           192:       ELSE
        !           193:          M = N
        !           194:       END IF
        !           195: *
        !           196:       INFO = 0
        !           197:       IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
        !           198:          INFO = -1
        !           199:       ELSE IF( .NOT.ALLV .AND. .NOT.OVER .AND. .NOT.SOMEV ) THEN
        !           200:          INFO = -2
        !           201:       ELSE IF( N.LT.0 ) THEN
        !           202:          INFO = -4
        !           203:       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
        !           204:          INFO = -6
        !           205:       ELSE IF( LDVL.LT.1 .OR. ( LEFTV .AND. LDVL.LT.N ) ) THEN
        !           206:          INFO = -8
        !           207:       ELSE IF( LDVR.LT.1 .OR. ( RIGHTV .AND. LDVR.LT.N ) ) THEN
        !           208:          INFO = -10
        !           209:       ELSE IF( MM.LT.M ) THEN
        !           210:          INFO = -11
        !           211:       END IF
        !           212:       IF( INFO.NE.0 ) THEN
        !           213:          CALL XERBLA( 'ZTREVC', -INFO )
        !           214:          RETURN
        !           215:       END IF
        !           216: *
        !           217: *     Quick return if possible.
        !           218: *
        !           219:       IF( N.EQ.0 )
        !           220:      $   RETURN
        !           221: *
        !           222: *     Set the constants to control overflow.
        !           223: *
        !           224:       UNFL = DLAMCH( 'Safe minimum' )
        !           225:       OVFL = ONE / UNFL
        !           226:       CALL DLABAD( UNFL, OVFL )
        !           227:       ULP = DLAMCH( 'Precision' )
        !           228:       SMLNUM = UNFL*( N / ULP )
        !           229: *
        !           230: *     Store the diagonal elements of T in working array WORK.
        !           231: *
        !           232:       DO 20 I = 1, N
        !           233:          WORK( I+N ) = T( I, I )
        !           234:    20 CONTINUE
        !           235: *
        !           236: *     Compute 1-norm of each column of strictly upper triangular
        !           237: *     part of T to control overflow in triangular solver.
        !           238: *
        !           239:       RWORK( 1 ) = ZERO
        !           240:       DO 30 J = 2, N
        !           241:          RWORK( J ) = DZASUM( J-1, T( 1, J ), 1 )
        !           242:    30 CONTINUE
        !           243: *
        !           244:       IF( RIGHTV ) THEN
        !           245: *
        !           246: *        Compute right eigenvectors.
        !           247: *
        !           248:          IS = M
        !           249:          DO 80 KI = N, 1, -1
        !           250: *
        !           251:             IF( SOMEV ) THEN
        !           252:                IF( .NOT.SELECT( KI ) )
        !           253:      $            GO TO 80
        !           254:             END IF
        !           255:             SMIN = MAX( ULP*( CABS1( T( KI, KI ) ) ), SMLNUM )
        !           256: *
        !           257:             WORK( 1 ) = CMONE
        !           258: *
        !           259: *           Form right-hand side.
        !           260: *
        !           261:             DO 40 K = 1, KI - 1
        !           262:                WORK( K ) = -T( K, KI )
        !           263:    40       CONTINUE
        !           264: *
        !           265: *           Solve the triangular system:
        !           266: *              (T(1:KI-1,1:KI-1) - T(KI,KI))*X = SCALE*WORK.
        !           267: *
        !           268:             DO 50 K = 1, KI - 1
        !           269:                T( K, K ) = T( K, K ) - T( KI, KI )
        !           270:                IF( CABS1( T( K, K ) ).LT.SMIN )
        !           271:      $            T( K, K ) = SMIN
        !           272:    50       CONTINUE
        !           273: *
        !           274:             IF( KI.GT.1 ) THEN
        !           275:                CALL ZLATRS( 'Upper', 'No transpose', 'Non-unit', 'Y',
        !           276:      $                      KI-1, T, LDT, WORK( 1 ), SCALE, RWORK,
        !           277:      $                      INFO )
        !           278:                WORK( KI ) = SCALE
        !           279:             END IF
        !           280: *
        !           281: *           Copy the vector x or Q*x to VR and normalize.
        !           282: *
        !           283:             IF( .NOT.OVER ) THEN
        !           284:                CALL ZCOPY( KI, WORK( 1 ), 1, VR( 1, IS ), 1 )
        !           285: *
        !           286:                II = IZAMAX( KI, VR( 1, IS ), 1 )
        !           287:                REMAX = ONE / CABS1( VR( II, IS ) )
        !           288:                CALL ZDSCAL( KI, REMAX, VR( 1, IS ), 1 )
        !           289: *
        !           290:                DO 60 K = KI + 1, N
        !           291:                   VR( K, IS ) = CMZERO
        !           292:    60          CONTINUE
        !           293:             ELSE
        !           294:                IF( KI.GT.1 )
        !           295:      $            CALL ZGEMV( 'N', N, KI-1, CMONE, VR, LDVR, WORK( 1 ),
        !           296:      $                        1, DCMPLX( SCALE ), VR( 1, KI ), 1 )
        !           297: *
        !           298:                II = IZAMAX( N, VR( 1, KI ), 1 )
        !           299:                REMAX = ONE / CABS1( VR( II, KI ) )
        !           300:                CALL ZDSCAL( N, REMAX, VR( 1, KI ), 1 )
        !           301:             END IF
        !           302: *
        !           303: *           Set back the original diagonal elements of T.
        !           304: *
        !           305:             DO 70 K = 1, KI - 1
        !           306:                T( K, K ) = WORK( K+N )
        !           307:    70       CONTINUE
        !           308: *
        !           309:             IS = IS - 1
        !           310:    80    CONTINUE
        !           311:       END IF
        !           312: *
        !           313:       IF( LEFTV ) THEN
        !           314: *
        !           315: *        Compute left eigenvectors.
        !           316: *
        !           317:          IS = 1
        !           318:          DO 130 KI = 1, N
        !           319: *
        !           320:             IF( SOMEV ) THEN
        !           321:                IF( .NOT.SELECT( KI ) )
        !           322:      $            GO TO 130
        !           323:             END IF
        !           324:             SMIN = MAX( ULP*( CABS1( T( KI, KI ) ) ), SMLNUM )
        !           325: *
        !           326:             WORK( N ) = CMONE
        !           327: *
        !           328: *           Form right-hand side.
        !           329: *
        !           330:             DO 90 K = KI + 1, N
        !           331:                WORK( K ) = -DCONJG( T( KI, K ) )
        !           332:    90       CONTINUE
        !           333: *
        !           334: *           Solve the triangular system:
        !           335: *              (T(KI+1:N,KI+1:N) - T(KI,KI))'*X = SCALE*WORK.
        !           336: *
        !           337:             DO 100 K = KI + 1, N
        !           338:                T( K, K ) = T( K, K ) - T( KI, KI )
        !           339:                IF( CABS1( T( K, K ) ).LT.SMIN )
        !           340:      $            T( K, K ) = SMIN
        !           341:   100       CONTINUE
        !           342: *
        !           343:             IF( KI.LT.N ) THEN
        !           344:                CALL ZLATRS( 'Upper', 'Conjugate transpose', 'Non-unit',
        !           345:      $                      'Y', N-KI, T( KI+1, KI+1 ), LDT,
        !           346:      $                      WORK( KI+1 ), SCALE, RWORK, INFO )
        !           347:                WORK( KI ) = SCALE
        !           348:             END IF
        !           349: *
        !           350: *           Copy the vector x or Q*x to VL and normalize.
        !           351: *
        !           352:             IF( .NOT.OVER ) THEN
        !           353:                CALL ZCOPY( N-KI+1, WORK( KI ), 1, VL( KI, IS ), 1 )
        !           354: *
        !           355:                II = IZAMAX( N-KI+1, VL( KI, IS ), 1 ) + KI - 1
        !           356:                REMAX = ONE / CABS1( VL( II, IS ) )
        !           357:                CALL ZDSCAL( N-KI+1, REMAX, VL( KI, IS ), 1 )
        !           358: *
        !           359:                DO 110 K = 1, KI - 1
        !           360:                   VL( K, IS ) = CMZERO
        !           361:   110          CONTINUE
        !           362:             ELSE
        !           363:                IF( KI.LT.N )
        !           364:      $            CALL ZGEMV( 'N', N, N-KI, CMONE, VL( 1, KI+1 ), LDVL,
        !           365:      $                        WORK( KI+1 ), 1, DCMPLX( SCALE ),
        !           366:      $                        VL( 1, KI ), 1 )
        !           367: *
        !           368:                II = IZAMAX( N, VL( 1, KI ), 1 )
        !           369:                REMAX = ONE / CABS1( VL( II, KI ) )
        !           370:                CALL ZDSCAL( N, REMAX, VL( 1, KI ), 1 )
        !           371:             END IF
        !           372: *
        !           373: *           Set back the original diagonal elements of T.
        !           374: *
        !           375:             DO 120 K = KI + 1, N
        !           376:                T( K, K ) = WORK( K+N )
        !           377:   120       CONTINUE
        !           378: *
        !           379:             IS = IS + 1
        !           380:   130    CONTINUE
        !           381:       END IF
        !           382: *
        !           383:       RETURN
        !           384: *
        !           385: *     End of ZTREVC
        !           386: *
        !           387:       END

CVSweb interface <joel.bertrand@systella.fr>