File:  [local] / rpl / lapack / lapack / ztprfs.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:46 2010 UTC (14 years, 3 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Initial revision

    1:       SUBROUTINE ZTPRFS( UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, X, LDX,
    2:      $                   FERR, BERR, WORK, RWORK, INFO )
    3: *
    4: *  -- LAPACK routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH.
   10: *
   11: *     .. Scalar Arguments ..
   12:       CHARACTER          DIAG, TRANS, UPLO
   13:       INTEGER            INFO, LDB, LDX, N, NRHS
   14: *     ..
   15: *     .. Array Arguments ..
   16:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
   17:       COMPLEX*16         AP( * ), B( LDB, * ), WORK( * ), X( LDX, * )
   18: *     ..
   19: *
   20: *  Purpose
   21: *  =======
   22: *
   23: *  ZTPRFS provides error bounds and backward error estimates for the
   24: *  solution to a system of linear equations with a triangular packed
   25: *  coefficient matrix.
   26: *
   27: *  The solution matrix X must be computed by ZTPTRS or some other
   28: *  means before entering this routine.  ZTPRFS does not do iterative
   29: *  refinement because doing so cannot improve the backward error.
   30: *
   31: *  Arguments
   32: *  =========
   33: *
   34: *  UPLO    (input) CHARACTER*1
   35: *          = 'U':  A is upper triangular;
   36: *          = 'L':  A is lower triangular.
   37: *
   38: *  TRANS   (input) CHARACTER*1
   39: *          Specifies the form of the system of equations:
   40: *          = 'N':  A * X = B     (No transpose)
   41: *          = 'T':  A**T * X = B  (Transpose)
   42: *          = 'C':  A**H * X = B  (Conjugate transpose)
   43: *
   44: *  DIAG    (input) CHARACTER*1
   45: *          = 'N':  A is non-unit triangular;
   46: *          = 'U':  A is unit triangular.
   47: *
   48: *  N       (input) INTEGER
   49: *          The order of the matrix A.  N >= 0.
   50: *
   51: *  NRHS    (input) INTEGER
   52: *          The number of right hand sides, i.e., the number of columns
   53: *          of the matrices B and X.  NRHS >= 0.
   54: *
   55: *  AP      (input) COMPLEX*16 array, dimension (N*(N+1)/2)
   56: *          The upper or lower triangular matrix A, packed columnwise in
   57: *          a linear array.  The j-th column of A is stored in the array
   58: *          AP as follows:
   59: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   60: *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
   61: *          If DIAG = 'U', the diagonal elements of A are not referenced
   62: *          and are assumed to be 1.
   63: *
   64: *  B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
   65: *          The right hand side matrix B.
   66: *
   67: *  LDB     (input) INTEGER
   68: *          The leading dimension of the array B.  LDB >= max(1,N).
   69: *
   70: *  X       (input) COMPLEX*16 array, dimension (LDX,NRHS)
   71: *          The solution matrix X.
   72: *
   73: *  LDX     (input) INTEGER
   74: *          The leading dimension of the array X.  LDX >= max(1,N).
   75: *
   76: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
   77: *          The estimated forward error bound for each solution vector
   78: *          X(j) (the j-th column of the solution matrix X).
   79: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
   80: *          is an estimated upper bound for the magnitude of the largest
   81: *          element in (X(j) - XTRUE) divided by the magnitude of the
   82: *          largest element in X(j).  The estimate is as reliable as
   83: *          the estimate for RCOND, and is almost always a slight
   84: *          overestimate of the true error.
   85: *
   86: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
   87: *          The componentwise relative backward error of each solution
   88: *          vector X(j) (i.e., the smallest relative change in
   89: *          any element of A or B that makes X(j) an exact solution).
   90: *
   91: *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
   92: *
   93: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
   94: *
   95: *  INFO    (output) INTEGER
   96: *          = 0:  successful exit
   97: *          < 0:  if INFO = -i, the i-th argument had an illegal value
   98: *
   99: *  =====================================================================
  100: *
  101: *     .. Parameters ..
  102:       DOUBLE PRECISION   ZERO
  103:       PARAMETER          ( ZERO = 0.0D+0 )
  104:       COMPLEX*16         ONE
  105:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
  106: *     ..
  107: *     .. Local Scalars ..
  108:       LOGICAL            NOTRAN, NOUNIT, UPPER
  109:       CHARACTER          TRANSN, TRANST
  110:       INTEGER            I, J, K, KASE, KC, NZ
  111:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  112:       COMPLEX*16         ZDUM
  113: *     ..
  114: *     .. Local Arrays ..
  115:       INTEGER            ISAVE( 3 )
  116: *     ..
  117: *     .. External Subroutines ..
  118:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZLACN2, ZTPMV, ZTPSV
  119: *     ..
  120: *     .. Intrinsic Functions ..
  121:       INTRINSIC          ABS, DBLE, DIMAG, MAX
  122: *     ..
  123: *     .. External Functions ..
  124:       LOGICAL            LSAME
  125:       DOUBLE PRECISION   DLAMCH
  126:       EXTERNAL           LSAME, DLAMCH
  127: *     ..
  128: *     .. Statement Functions ..
  129:       DOUBLE PRECISION   CABS1
  130: *     ..
  131: *     .. Statement Function definitions ..
  132:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  133: *     ..
  134: *     .. Executable Statements ..
  135: *
  136: *     Test the input parameters.
  137: *
  138:       INFO = 0
  139:       UPPER = LSAME( UPLO, 'U' )
  140:       NOTRAN = LSAME( TRANS, 'N' )
  141:       NOUNIT = LSAME( DIAG, 'N' )
  142: *
  143:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  144:          INFO = -1
  145:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  146:      $         LSAME( TRANS, 'C' ) ) THEN
  147:          INFO = -2
  148:       ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  149:          INFO = -3
  150:       ELSE IF( N.LT.0 ) THEN
  151:          INFO = -4
  152:       ELSE IF( NRHS.LT.0 ) THEN
  153:          INFO = -5
  154:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  155:          INFO = -8
  156:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  157:          INFO = -10
  158:       END IF
  159:       IF( INFO.NE.0 ) THEN
  160:          CALL XERBLA( 'ZTPRFS', -INFO )
  161:          RETURN
  162:       END IF
  163: *
  164: *     Quick return if possible
  165: *
  166:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  167:          DO 10 J = 1, NRHS
  168:             FERR( J ) = ZERO
  169:             BERR( J ) = ZERO
  170:    10    CONTINUE
  171:          RETURN
  172:       END IF
  173: *
  174:       IF( NOTRAN ) THEN
  175:          TRANSN = 'N'
  176:          TRANST = 'C'
  177:       ELSE
  178:          TRANSN = 'C'
  179:          TRANST = 'N'
  180:       END IF
  181: *
  182: *     NZ = maximum number of nonzero elements in each row of A, plus 1
  183: *
  184:       NZ = N + 1
  185:       EPS = DLAMCH( 'Epsilon' )
  186:       SAFMIN = DLAMCH( 'Safe minimum' )
  187:       SAFE1 = NZ*SAFMIN
  188:       SAFE2 = SAFE1 / EPS
  189: *
  190: *     Do for each right hand side
  191: *
  192:       DO 250 J = 1, NRHS
  193: *
  194: *        Compute residual R = B - op(A) * X,
  195: *        where op(A) = A, A**T, or A**H, depending on TRANS.
  196: *
  197:          CALL ZCOPY( N, X( 1, J ), 1, WORK, 1 )
  198:          CALL ZTPMV( UPLO, TRANS, DIAG, N, AP, WORK, 1 )
  199:          CALL ZAXPY( N, -ONE, B( 1, J ), 1, WORK, 1 )
  200: *
  201: *        Compute componentwise relative backward error from formula
  202: *
  203: *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
  204: *
  205: *        where abs(Z) is the componentwise absolute value of the matrix
  206: *        or vector Z.  If the i-th component of the denominator is less
  207: *        than SAFE2, then SAFE1 is added to the i-th components of the
  208: *        numerator and denominator before dividing.
  209: *
  210:          DO 20 I = 1, N
  211:             RWORK( I ) = CABS1( B( I, J ) )
  212:    20    CONTINUE
  213: *
  214:          IF( NOTRAN ) THEN
  215: *
  216: *           Compute abs(A)*abs(X) + abs(B).
  217: *
  218:             IF( UPPER ) THEN
  219:                KC = 1
  220:                IF( NOUNIT ) THEN
  221:                   DO 40 K = 1, N
  222:                      XK = CABS1( X( K, J ) )
  223:                      DO 30 I = 1, K
  224:                         RWORK( I ) = RWORK( I ) +
  225:      $                               CABS1( AP( KC+I-1 ) )*XK
  226:    30                CONTINUE
  227:                      KC = KC + K
  228:    40             CONTINUE
  229:                ELSE
  230:                   DO 60 K = 1, N
  231:                      XK = CABS1( X( K, J ) )
  232:                      DO 50 I = 1, K - 1
  233:                         RWORK( I ) = RWORK( I ) +
  234:      $                               CABS1( AP( KC+I-1 ) )*XK
  235:    50                CONTINUE
  236:                      RWORK( K ) = RWORK( K ) + XK
  237:                      KC = KC + K
  238:    60             CONTINUE
  239:                END IF
  240:             ELSE
  241:                KC = 1
  242:                IF( NOUNIT ) THEN
  243:                   DO 80 K = 1, N
  244:                      XK = CABS1( X( K, J ) )
  245:                      DO 70 I = K, N
  246:                         RWORK( I ) = RWORK( I ) +
  247:      $                               CABS1( AP( KC+I-K ) )*XK
  248:    70                CONTINUE
  249:                      KC = KC + N - K + 1
  250:    80             CONTINUE
  251:                ELSE
  252:                   DO 100 K = 1, N
  253:                      XK = CABS1( X( K, J ) )
  254:                      DO 90 I = K + 1, N
  255:                         RWORK( I ) = RWORK( I ) +
  256:      $                               CABS1( AP( KC+I-K ) )*XK
  257:    90                CONTINUE
  258:                      RWORK( K ) = RWORK( K ) + XK
  259:                      KC = KC + N - K + 1
  260:   100             CONTINUE
  261:                END IF
  262:             END IF
  263:          ELSE
  264: *
  265: *           Compute abs(A**H)*abs(X) + abs(B).
  266: *
  267:             IF( UPPER ) THEN
  268:                KC = 1
  269:                IF( NOUNIT ) THEN
  270:                   DO 120 K = 1, N
  271:                      S = ZERO
  272:                      DO 110 I = 1, K
  273:                         S = S + CABS1( AP( KC+I-1 ) )*CABS1( X( I, J ) )
  274:   110                CONTINUE
  275:                      RWORK( K ) = RWORK( K ) + S
  276:                      KC = KC + K
  277:   120             CONTINUE
  278:                ELSE
  279:                   DO 140 K = 1, N
  280:                      S = CABS1( X( K, J ) )
  281:                      DO 130 I = 1, K - 1
  282:                         S = S + CABS1( AP( KC+I-1 ) )*CABS1( X( I, J ) )
  283:   130                CONTINUE
  284:                      RWORK( K ) = RWORK( K ) + S
  285:                      KC = KC + K
  286:   140             CONTINUE
  287:                END IF
  288:             ELSE
  289:                KC = 1
  290:                IF( NOUNIT ) THEN
  291:                   DO 160 K = 1, N
  292:                      S = ZERO
  293:                      DO 150 I = K, N
  294:                         S = S + CABS1( AP( KC+I-K ) )*CABS1( X( I, J ) )
  295:   150                CONTINUE
  296:                      RWORK( K ) = RWORK( K ) + S
  297:                      KC = KC + N - K + 1
  298:   160             CONTINUE
  299:                ELSE
  300:                   DO 180 K = 1, N
  301:                      S = CABS1( X( K, J ) )
  302:                      DO 170 I = K + 1, N
  303:                         S = S + CABS1( AP( KC+I-K ) )*CABS1( X( I, J ) )
  304:   170                CONTINUE
  305:                      RWORK( K ) = RWORK( K ) + S
  306:                      KC = KC + N - K + 1
  307:   180             CONTINUE
  308:                END IF
  309:             END IF
  310:          END IF
  311:          S = ZERO
  312:          DO 190 I = 1, N
  313:             IF( RWORK( I ).GT.SAFE2 ) THEN
  314:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
  315:             ELSE
  316:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
  317:      $             ( RWORK( I )+SAFE1 ) )
  318:             END IF
  319:   190    CONTINUE
  320:          BERR( J ) = S
  321: *
  322: *        Bound error from formula
  323: *
  324: *        norm(X - XTRUE) / norm(X) .le. FERR =
  325: *        norm( abs(inv(op(A)))*
  326: *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
  327: *
  328: *        where
  329: *          norm(Z) is the magnitude of the largest component of Z
  330: *          inv(op(A)) is the inverse of op(A)
  331: *          abs(Z) is the componentwise absolute value of the matrix or
  332: *             vector Z
  333: *          NZ is the maximum number of nonzeros in any row of A, plus 1
  334: *          EPS is machine epsilon
  335: *
  336: *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
  337: *        is incremented by SAFE1 if the i-th component of
  338: *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
  339: *
  340: *        Use ZLACN2 to estimate the infinity-norm of the matrix
  341: *           inv(op(A)) * diag(W),
  342: *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
  343: *
  344:          DO 200 I = 1, N
  345:             IF( RWORK( I ).GT.SAFE2 ) THEN
  346:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
  347:             ELSE
  348:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
  349:      $                      SAFE1
  350:             END IF
  351:   200    CONTINUE
  352: *
  353:          KASE = 0
  354:   210    CONTINUE
  355:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
  356:          IF( KASE.NE.0 ) THEN
  357:             IF( KASE.EQ.1 ) THEN
  358: *
  359: *              Multiply by diag(W)*inv(op(A)**H).
  360: *
  361:                CALL ZTPSV( UPLO, TRANST, DIAG, N, AP, WORK, 1 )
  362:                DO 220 I = 1, N
  363:                   WORK( I ) = RWORK( I )*WORK( I )
  364:   220          CONTINUE
  365:             ELSE
  366: *
  367: *              Multiply by inv(op(A))*diag(W).
  368: *
  369:                DO 230 I = 1, N
  370:                   WORK( I ) = RWORK( I )*WORK( I )
  371:   230          CONTINUE
  372:                CALL ZTPSV( UPLO, TRANSN, DIAG, N, AP, WORK, 1 )
  373:             END IF
  374:             GO TO 210
  375:          END IF
  376: *
  377: *        Normalize error.
  378: *
  379:          LSTRES = ZERO
  380:          DO 240 I = 1, N
  381:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
  382:   240    CONTINUE
  383:          IF( LSTRES.NE.ZERO )
  384:      $      FERR( J ) = FERR( J ) / LSTRES
  385: *
  386:   250 CONTINUE
  387: *
  388:       RETURN
  389: *
  390: *     End of ZTPRFS
  391: *
  392:       END

CVSweb interface <joel.bertrand@systella.fr>