--- rpl/lapack/lapack/ztprfs.f 2010/12/21 13:53:57 1.7 +++ rpl/lapack/lapack/ztprfs.f 2011/11/21 20:43:22 1.8 @@ -1,12 +1,183 @@ +*> \brief \b ZTPRFS +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download ZTPRFS + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE ZTPRFS( UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, X, LDX, +* FERR, BERR, WORK, RWORK, INFO ) +* +* .. Scalar Arguments .. +* CHARACTER DIAG, TRANS, UPLO +* INTEGER INFO, LDB, LDX, N, NRHS +* .. +* .. Array Arguments .. +* DOUBLE PRECISION BERR( * ), FERR( * ), RWORK( * ) +* COMPLEX*16 AP( * ), B( LDB, * ), WORK( * ), X( LDX, * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> ZTPRFS provides error bounds and backward error estimates for the +*> solution to a system of linear equations with a triangular packed +*> coefficient matrix. +*> +*> The solution matrix X must be computed by ZTPTRS or some other +*> means before entering this routine. ZTPRFS does not do iterative +*> refinement because doing so cannot improve the backward error. +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] UPLO +*> \verbatim +*> UPLO is CHARACTER*1 +*> = 'U': A is upper triangular; +*> = 'L': A is lower triangular. +*> \endverbatim +*> +*> \param[in] TRANS +*> \verbatim +*> TRANS is CHARACTER*1 +*> Specifies the form of the system of equations: +*> = 'N': A * X = B (No transpose) +*> = 'T': A**T * X = B (Transpose) +*> = 'C': A**H * X = B (Conjugate transpose) +*> \endverbatim +*> +*> \param[in] DIAG +*> \verbatim +*> DIAG is CHARACTER*1 +*> = 'N': A is non-unit triangular; +*> = 'U': A is unit triangular. +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The order of the matrix A. N >= 0. +*> \endverbatim +*> +*> \param[in] NRHS +*> \verbatim +*> NRHS is INTEGER +*> The number of right hand sides, i.e., the number of columns +*> of the matrices B and X. NRHS >= 0. +*> \endverbatim +*> +*> \param[in] AP +*> \verbatim +*> AP is COMPLEX*16 array, dimension (N*(N+1)/2) +*> The upper or lower triangular matrix A, packed columnwise in +*> a linear array. The j-th column of A is stored in the array +*> AP as follows: +*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; +*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. +*> If DIAG = 'U', the diagonal elements of A are not referenced +*> and are assumed to be 1. +*> \endverbatim +*> +*> \param[in] B +*> \verbatim +*> B is COMPLEX*16 array, dimension (LDB,NRHS) +*> The right hand side matrix B. +*> \endverbatim +*> +*> \param[in] LDB +*> \verbatim +*> LDB is INTEGER +*> The leading dimension of the array B. LDB >= max(1,N). +*> \endverbatim +*> +*> \param[in] X +*> \verbatim +*> X is COMPLEX*16 array, dimension (LDX,NRHS) +*> The solution matrix X. +*> \endverbatim +*> +*> \param[in] LDX +*> \verbatim +*> LDX is INTEGER +*> The leading dimension of the array X. LDX >= max(1,N). +*> \endverbatim +*> +*> \param[out] FERR +*> \verbatim +*> FERR is DOUBLE PRECISION array, dimension (NRHS) +*> The estimated forward error bound for each solution vector +*> X(j) (the j-th column of the solution matrix X). +*> If XTRUE is the true solution corresponding to X(j), FERR(j) +*> is an estimated upper bound for the magnitude of the largest +*> element in (X(j) - XTRUE) divided by the magnitude of the +*> largest element in X(j). The estimate is as reliable as +*> the estimate for RCOND, and is almost always a slight +*> overestimate of the true error. +*> \endverbatim +*> +*> \param[out] BERR +*> \verbatim +*> BERR is DOUBLE PRECISION array, dimension (NRHS) +*> The componentwise relative backward error of each solution +*> vector X(j) (i.e., the smallest relative change in +*> any element of A or B that makes X(j) an exact solution). +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is COMPLEX*16 array, dimension (2*N) +*> \endverbatim +*> +*> \param[out] RWORK +*> \verbatim +*> RWORK is DOUBLE PRECISION array, dimension (N) +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: successful exit +*> < 0: if INFO = -i, the i-th argument had an illegal value +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \date November 2011 +* +*> \ingroup complex16OTHERcomputational +* +* ===================================================================== SUBROUTINE ZTPRFS( UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, X, LDX, $ FERR, BERR, WORK, RWORK, INFO ) * -* -- LAPACK routine (version 3.2) -- +* -- LAPACK computational routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* November 2006 -* -* Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH. +* November 2011 * * .. Scalar Arguments .. CHARACTER DIAG, TRANS, UPLO @@ -17,85 +188,6 @@ COMPLEX*16 AP( * ), B( LDB, * ), WORK( * ), X( LDX, * ) * .. * -* Purpose -* ======= -* -* ZTPRFS provides error bounds and backward error estimates for the -* solution to a system of linear equations with a triangular packed -* coefficient matrix. -* -* The solution matrix X must be computed by ZTPTRS or some other -* means before entering this routine. ZTPRFS does not do iterative -* refinement because doing so cannot improve the backward error. -* -* Arguments -* ========= -* -* UPLO (input) CHARACTER*1 -* = 'U': A is upper triangular; -* = 'L': A is lower triangular. -* -* TRANS (input) CHARACTER*1 -* Specifies the form of the system of equations: -* = 'N': A * X = B (No transpose) -* = 'T': A**T * X = B (Transpose) -* = 'C': A**H * X = B (Conjugate transpose) -* -* DIAG (input) CHARACTER*1 -* = 'N': A is non-unit triangular; -* = 'U': A is unit triangular. -* -* N (input) INTEGER -* The order of the matrix A. N >= 0. -* -* NRHS (input) INTEGER -* The number of right hand sides, i.e., the number of columns -* of the matrices B and X. NRHS >= 0. -* -* AP (input) COMPLEX*16 array, dimension (N*(N+1)/2) -* The upper or lower triangular matrix A, packed columnwise in -* a linear array. The j-th column of A is stored in the array -* AP as follows: -* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; -* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. -* If DIAG = 'U', the diagonal elements of A are not referenced -* and are assumed to be 1. -* -* B (input) COMPLEX*16 array, dimension (LDB,NRHS) -* The right hand side matrix B. -* -* LDB (input) INTEGER -* The leading dimension of the array B. LDB >= max(1,N). -* -* X (input) COMPLEX*16 array, dimension (LDX,NRHS) -* The solution matrix X. -* -* LDX (input) INTEGER -* The leading dimension of the array X. LDX >= max(1,N). -* -* FERR (output) DOUBLE PRECISION array, dimension (NRHS) -* The estimated forward error bound for each solution vector -* X(j) (the j-th column of the solution matrix X). -* If XTRUE is the true solution corresponding to X(j), FERR(j) -* is an estimated upper bound for the magnitude of the largest -* element in (X(j) - XTRUE) divided by the magnitude of the -* largest element in X(j). The estimate is as reliable as -* the estimate for RCOND, and is almost always a slight -* overestimate of the true error. -* -* BERR (output) DOUBLE PRECISION array, dimension (NRHS) -* The componentwise relative backward error of each solution -* vector X(j) (i.e., the smallest relative change in -* any element of A or B that makes X(j) an exact solution). -* -* WORK (workspace) COMPLEX*16 array, dimension (2*N) -* -* RWORK (workspace) DOUBLE PRECISION array, dimension (N) -* -* INFO (output) INTEGER -* = 0: successful exit -* < 0: if INFO = -i, the i-th argument had an illegal value -* * ===================================================================== * * .. Parameters ..