File:  [local] / rpl / lapack / lapack / ztgsyl.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:46 2010 UTC (14 years, 3 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Initial revision

    1:       SUBROUTINE ZTGSYL( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
    2:      $                   LDD, E, LDE, F, LDF, SCALE, DIF, WORK, LWORK,
    3:      $                   IWORK, INFO )
    4: *
    5: *  -- LAPACK routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     January 2007
    9: *
   10: *     .. Scalar Arguments ..
   11:       CHARACTER          TRANS
   12:       INTEGER            IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF,
   13:      $                   LWORK, M, N
   14:       DOUBLE PRECISION   DIF, SCALE
   15: *     ..
   16: *     .. Array Arguments ..
   17:       INTEGER            IWORK( * )
   18:       COMPLEX*16         A( LDA, * ), B( LDB, * ), C( LDC, * ),
   19:      $                   D( LDD, * ), E( LDE, * ), F( LDF, * ),
   20:      $                   WORK( * )
   21: *     ..
   22: *
   23: *  Purpose
   24: *  =======
   25: *
   26: *  ZTGSYL solves the generalized Sylvester equation:
   27: *
   28: *              A * R - L * B = scale * C            (1)
   29: *              D * R - L * E = scale * F
   30: *
   31: *  where R and L are unknown m-by-n matrices, (A, D), (B, E) and
   32: *  (C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n,
   33: *  respectively, with complex entries. A, B, D and E are upper
   34: *  triangular (i.e., (A,D) and (B,E) in generalized Schur form).
   35: *
   36: *  The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1
   37: *  is an output scaling factor chosen to avoid overflow.
   38: *
   39: *  In matrix notation (1) is equivalent to solve Zx = scale*b, where Z
   40: *  is defined as
   41: *
   42: *         Z = [ kron(In, A)  -kron(B', Im) ]        (2)
   43: *             [ kron(In, D)  -kron(E', Im) ],
   44: *
   45: *  Here Ix is the identity matrix of size x and X' is the conjugate
   46: *  transpose of X. Kron(X, Y) is the Kronecker product between the
   47: *  matrices X and Y.
   48: *
   49: *  If TRANS = 'C', y in the conjugate transposed system Z'*y = scale*b
   50: *  is solved for, which is equivalent to solve for R and L in
   51: *
   52: *              A' * R + D' * L = scale * C           (3)
   53: *              R * B' + L * E' = scale * -F
   54: *
   55: *  This case (TRANS = 'C') is used to compute an one-norm-based estimate
   56: *  of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D)
   57: *  and (B,E), using ZLACON.
   58: *
   59: *  If IJOB >= 1, ZTGSYL computes a Frobenius norm-based estimate of
   60: *  Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the
   61: *  reciprocal of the smallest singular value of Z.
   62: *
   63: *  This is a level-3 BLAS algorithm.
   64: *
   65: *  Arguments
   66: *  =========
   67: *
   68: *  TRANS   (input) CHARACTER*1
   69: *          = 'N': solve the generalized sylvester equation (1).
   70: *          = 'C': solve the "conjugate transposed" system (3).
   71: *
   72: *  IJOB    (input) INTEGER
   73: *          Specifies what kind of functionality to be performed.
   74: *          =0: solve (1) only.
   75: *          =1: The functionality of 0 and 3.
   76: *          =2: The functionality of 0 and 4.
   77: *          =3: Only an estimate of Dif[(A,D), (B,E)] is computed.
   78: *              (look ahead strategy is used).
   79: *          =4: Only an estimate of Dif[(A,D), (B,E)] is computed.
   80: *              (ZGECON on sub-systems is used).
   81: *          Not referenced if TRANS = 'C'.
   82: *
   83: *  M       (input) INTEGER
   84: *          The order of the matrices A and D, and the row dimension of
   85: *          the matrices C, F, R and L.
   86: *
   87: *  N       (input) INTEGER
   88: *          The order of the matrices B and E, and the column dimension
   89: *          of the matrices C, F, R and L.
   90: *
   91: *  A       (input) COMPLEX*16 array, dimension (LDA, M)
   92: *          The upper triangular matrix A.
   93: *
   94: *  LDA     (input) INTEGER
   95: *          The leading dimension of the array A. LDA >= max(1, M).
   96: *
   97: *  B       (input) COMPLEX*16 array, dimension (LDB, N)
   98: *          The upper triangular matrix B.
   99: *
  100: *  LDB     (input) INTEGER
  101: *          The leading dimension of the array B. LDB >= max(1, N).
  102: *
  103: *  C       (input/output) COMPLEX*16 array, dimension (LDC, N)
  104: *          On entry, C contains the right-hand-side of the first matrix
  105: *          equation in (1) or (3).
  106: *          On exit, if IJOB = 0, 1 or 2, C has been overwritten by
  107: *          the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R,
  108: *          the solution achieved during the computation of the
  109: *          Dif-estimate.
  110: *
  111: *  LDC     (input) INTEGER
  112: *          The leading dimension of the array C. LDC >= max(1, M).
  113: *
  114: *  D       (input) COMPLEX*16 array, dimension (LDD, M)
  115: *          The upper triangular matrix D.
  116: *
  117: *  LDD     (input) INTEGER
  118: *          The leading dimension of the array D. LDD >= max(1, M).
  119: *
  120: *  E       (input) COMPLEX*16 array, dimension (LDE, N)
  121: *          The upper triangular matrix E.
  122: *
  123: *  LDE     (input) INTEGER
  124: *          The leading dimension of the array E. LDE >= max(1, N).
  125: *
  126: *  F       (input/output) COMPLEX*16 array, dimension (LDF, N)
  127: *          On entry, F contains the right-hand-side of the second matrix
  128: *          equation in (1) or (3).
  129: *          On exit, if IJOB = 0, 1 or 2, F has been overwritten by
  130: *          the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L,
  131: *          the solution achieved during the computation of the
  132: *          Dif-estimate.
  133: *
  134: *  LDF     (input) INTEGER
  135: *          The leading dimension of the array F. LDF >= max(1, M).
  136: *
  137: *  DIF     (output) DOUBLE PRECISION
  138: *          On exit DIF is the reciprocal of a lower bound of the
  139: *          reciprocal of the Dif-function, i.e. DIF is an upper bound of
  140: *          Dif[(A,D), (B,E)] = sigma-min(Z), where Z as in (2).
  141: *          IF IJOB = 0 or TRANS = 'C', DIF is not referenced.
  142: *
  143: *  SCALE   (output) DOUBLE PRECISION
  144: *          On exit SCALE is the scaling factor in (1) or (3).
  145: *          If 0 < SCALE < 1, C and F hold the solutions R and L, resp.,
  146: *          to a slightly perturbed system but the input matrices A, B,
  147: *          D and E have not been changed. If SCALE = 0, R and L will
  148: *          hold the solutions to the homogenious system with C = F = 0.
  149: *
  150: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
  151: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  152: *
  153: *  LWORK   (input) INTEGER
  154: *          The dimension of the array WORK. LWORK > = 1.
  155: *          If IJOB = 1 or 2 and TRANS = 'N', LWORK >= max(1,2*M*N).
  156: *
  157: *          If LWORK = -1, then a workspace query is assumed; the routine
  158: *          only calculates the optimal size of the WORK array, returns
  159: *          this value as the first entry of the WORK array, and no error
  160: *          message related to LWORK is issued by XERBLA.
  161: *
  162: *  IWORK   (workspace) INTEGER array, dimension (M+N+2)
  163: *
  164: *  INFO    (output) INTEGER
  165: *            =0: successful exit
  166: *            <0: If INFO = -i, the i-th argument had an illegal value.
  167: *            >0: (A, D) and (B, E) have common or very close
  168: *                eigenvalues.
  169: *
  170: *  Further Details
  171: *  ===============
  172: *
  173: *  Based on contributions by
  174: *     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
  175: *     Umea University, S-901 87 Umea, Sweden.
  176: *
  177: *  [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
  178: *      for Solving the Generalized Sylvester Equation and Estimating the
  179: *      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
  180: *      Department of Computing Science, Umea University, S-901 87 Umea,
  181: *      Sweden, December 1993, Revised April 1994, Also as LAPACK Working
  182: *      Note 75.  To appear in ACM Trans. on Math. Software, Vol 22,
  183: *      No 1, 1996.
  184: *
  185: *  [2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester
  186: *      Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal.
  187: *      Appl., 15(4):1045-1060, 1994.
  188: *
  189: *  [3] B. Kagstrom and L. Westin, Generalized Schur Methods with
  190: *      Condition Estimators for Solving the Generalized Sylvester
  191: *      Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7,
  192: *      July 1989, pp 745-751.
  193: *
  194: *  =====================================================================
  195: *  Replaced various illegal calls to CCOPY by calls to CLASET.
  196: *  Sven Hammarling, 1/5/02.
  197: *
  198: *     .. Parameters ..
  199:       DOUBLE PRECISION   ZERO, ONE
  200:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  201:       COMPLEX*16         CZERO
  202:       PARAMETER          ( CZERO = (0.0D+0, 0.0D+0) )
  203: *     ..
  204: *     .. Local Scalars ..
  205:       LOGICAL            LQUERY, NOTRAN
  206:       INTEGER            I, IE, IFUNC, IROUND, IS, ISOLVE, J, JE, JS, K,
  207:      $                   LINFO, LWMIN, MB, NB, P, PQ, Q
  208:       DOUBLE PRECISION   DSCALE, DSUM, SCALE2, SCALOC
  209: *     ..
  210: *     .. External Functions ..
  211:       LOGICAL            LSAME
  212:       INTEGER            ILAENV
  213:       EXTERNAL           LSAME, ILAENV
  214: *     ..
  215: *     .. External Subroutines ..
  216:       EXTERNAL           XERBLA, ZGEMM, ZLACPY, ZLASET, ZSCAL, ZTGSY2
  217: *     ..
  218: *     .. Intrinsic Functions ..
  219:       INTRINSIC          DBLE, DCMPLX, MAX, SQRT
  220: *     ..
  221: *     .. Executable Statements ..
  222: *
  223: *     Decode and test input parameters
  224: *
  225:       INFO = 0
  226:       NOTRAN = LSAME( TRANS, 'N' )
  227:       LQUERY = ( LWORK.EQ.-1 )
  228: *
  229:       IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
  230:          INFO = -1
  231:       ELSE IF( NOTRAN ) THEN
  232:          IF( ( IJOB.LT.0 ) .OR. ( IJOB.GT.4 ) ) THEN
  233:             INFO = -2
  234:          END IF
  235:       END IF
  236:       IF( INFO.EQ.0 ) THEN
  237:          IF( M.LE.0 ) THEN
  238:             INFO = -3
  239:          ELSE IF( N.LE.0 ) THEN
  240:             INFO = -4
  241:          ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  242:             INFO = -6
  243:          ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  244:             INFO = -8
  245:          ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  246:             INFO = -10
  247:          ELSE IF( LDD.LT.MAX( 1, M ) ) THEN
  248:             INFO = -12
  249:          ELSE IF( LDE.LT.MAX( 1, N ) ) THEN
  250:             INFO = -14
  251:          ELSE IF( LDF.LT.MAX( 1, M ) ) THEN
  252:             INFO = -16
  253:          END IF
  254:       END IF
  255: *
  256:       IF( INFO.EQ.0 ) THEN
  257:          IF( NOTRAN ) THEN
  258:             IF( IJOB.EQ.1 .OR. IJOB.EQ.2 ) THEN
  259:                LWMIN = MAX( 1, 2*M*N )
  260:             ELSE
  261:                LWMIN = 1
  262:             END IF
  263:          ELSE
  264:             LWMIN = 1
  265:          END IF
  266:          WORK( 1 ) = LWMIN
  267: *
  268:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  269:             INFO = -20
  270:          END IF
  271:       END IF
  272: *
  273:       IF( INFO.NE.0 ) THEN
  274:          CALL XERBLA( 'ZTGSYL', -INFO )
  275:          RETURN
  276:       ELSE IF( LQUERY ) THEN
  277:          RETURN
  278:       END IF
  279: *
  280: *     Quick return if possible
  281: *
  282:       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  283:          SCALE = 1
  284:          IF( NOTRAN ) THEN
  285:             IF( IJOB.NE.0 ) THEN
  286:                DIF = 0
  287:             END IF
  288:          END IF
  289:          RETURN
  290:       END IF
  291: *
  292: *     Determine  optimal block sizes MB and NB
  293: *
  294:       MB = ILAENV( 2, 'ZTGSYL', TRANS, M, N, -1, -1 )
  295:       NB = ILAENV( 5, 'ZTGSYL', TRANS, M, N, -1, -1 )
  296: *
  297:       ISOLVE = 1
  298:       IFUNC = 0
  299:       IF( NOTRAN ) THEN
  300:          IF( IJOB.GE.3 ) THEN
  301:             IFUNC = IJOB - 2
  302:             CALL ZLASET( 'F', M, N, CZERO, CZERO, C, LDC )
  303:             CALL ZLASET( 'F', M, N, CZERO, CZERO, F, LDF )
  304:          ELSE IF( IJOB.GE.1 .AND. NOTRAN ) THEN
  305:             ISOLVE = 2
  306:          END IF
  307:       END IF
  308: *
  309:       IF( ( MB.LE.1 .AND. NB.LE.1 ) .OR. ( MB.GE.M .AND. NB.GE.N ) )
  310:      $     THEN
  311: *
  312: *        Use unblocked Level 2 solver
  313: *
  314:          DO 30 IROUND = 1, ISOLVE
  315: *
  316:             SCALE = ONE
  317:             DSCALE = ZERO
  318:             DSUM = ONE
  319:             PQ = M*N
  320:             CALL ZTGSY2( TRANS, IFUNC, M, N, A, LDA, B, LDB, C, LDC, D,
  321:      $                   LDD, E, LDE, F, LDF, SCALE, DSUM, DSCALE,
  322:      $                   INFO )
  323:             IF( DSCALE.NE.ZERO ) THEN
  324:                IF( IJOB.EQ.1 .OR. IJOB.EQ.3 ) THEN
  325:                   DIF = SQRT( DBLE( 2*M*N ) ) / ( DSCALE*SQRT( DSUM ) )
  326:                ELSE
  327:                   DIF = SQRT( DBLE( PQ ) ) / ( DSCALE*SQRT( DSUM ) )
  328:                END IF
  329:             END IF
  330:             IF( ISOLVE.EQ.2 .AND. IROUND.EQ.1 ) THEN
  331:                IF( NOTRAN ) THEN
  332:                   IFUNC = IJOB
  333:                END IF
  334:                SCALE2 = SCALE
  335:                CALL ZLACPY( 'F', M, N, C, LDC, WORK, M )
  336:                CALL ZLACPY( 'F', M, N, F, LDF, WORK( M*N+1 ), M )
  337:                CALL ZLASET( 'F', M, N, CZERO, CZERO, C, LDC )
  338:                CALL ZLASET( 'F', M, N, CZERO, CZERO, F, LDF )
  339:             ELSE IF( ISOLVE.EQ.2 .AND. IROUND.EQ.2 ) THEN
  340:                CALL ZLACPY( 'F', M, N, WORK, M, C, LDC )
  341:                CALL ZLACPY( 'F', M, N, WORK( M*N+1 ), M, F, LDF )
  342:                SCALE = SCALE2
  343:             END IF
  344:    30    CONTINUE
  345: *
  346:          RETURN
  347: *
  348:       END IF
  349: *
  350: *     Determine block structure of A
  351: *
  352:       P = 0
  353:       I = 1
  354:    40 CONTINUE
  355:       IF( I.GT.M )
  356:      $   GO TO 50
  357:       P = P + 1
  358:       IWORK( P ) = I
  359:       I = I + MB
  360:       IF( I.GE.M )
  361:      $   GO TO 50
  362:       GO TO 40
  363:    50 CONTINUE
  364:       IWORK( P+1 ) = M + 1
  365:       IF( IWORK( P ).EQ.IWORK( P+1 ) )
  366:      $   P = P - 1
  367: *
  368: *     Determine block structure of B
  369: *
  370:       Q = P + 1
  371:       J = 1
  372:    60 CONTINUE
  373:       IF( J.GT.N )
  374:      $   GO TO 70
  375: *
  376:       Q = Q + 1
  377:       IWORK( Q ) = J
  378:       J = J + NB
  379:       IF( J.GE.N )
  380:      $   GO TO 70
  381:       GO TO 60
  382: *
  383:    70 CONTINUE
  384:       IWORK( Q+1 ) = N + 1
  385:       IF( IWORK( Q ).EQ.IWORK( Q+1 ) )
  386:      $   Q = Q - 1
  387: *
  388:       IF( NOTRAN ) THEN
  389:          DO 150 IROUND = 1, ISOLVE
  390: *
  391: *           Solve (I, J) - subsystem
  392: *               A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J)
  393: *               D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J)
  394: *           for I = P, P - 1, ..., 1; J = 1, 2, ..., Q
  395: *
  396:             PQ = 0
  397:             SCALE = ONE
  398:             DSCALE = ZERO
  399:             DSUM = ONE
  400:             DO 130 J = P + 2, Q
  401:                JS = IWORK( J )
  402:                JE = IWORK( J+1 ) - 1
  403:                NB = JE - JS + 1
  404:                DO 120 I = P, 1, -1
  405:                   IS = IWORK( I )
  406:                   IE = IWORK( I+1 ) - 1
  407:                   MB = IE - IS + 1
  408:                   CALL ZTGSY2( TRANS, IFUNC, MB, NB, A( IS, IS ), LDA,
  409:      $                         B( JS, JS ), LDB, C( IS, JS ), LDC,
  410:      $                         D( IS, IS ), LDD, E( JS, JS ), LDE,
  411:      $                         F( IS, JS ), LDF, SCALOC, DSUM, DSCALE,
  412:      $                         LINFO )
  413:                   IF( LINFO.GT.0 )
  414:      $               INFO = LINFO
  415:                   PQ = PQ + MB*NB
  416:                   IF( SCALOC.NE.ONE ) THEN
  417:                      DO 80 K = 1, JS - 1
  418:                         CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ),
  419:      $                              C( 1, K ), 1 )
  420:                         CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ),
  421:      $                              F( 1, K ), 1 )
  422:    80                CONTINUE
  423:                      DO 90 K = JS, JE
  424:                         CALL ZSCAL( IS-1, DCMPLX( SCALOC, ZERO ),
  425:      $                              C( 1, K ), 1 )
  426:                         CALL ZSCAL( IS-1, DCMPLX( SCALOC, ZERO ),
  427:      $                              F( 1, K ), 1 )
  428:    90                CONTINUE
  429:                      DO 100 K = JS, JE
  430:                         CALL ZSCAL( M-IE, DCMPLX( SCALOC, ZERO ),
  431:      $                              C( IE+1, K ), 1 )
  432:                         CALL ZSCAL( M-IE, DCMPLX( SCALOC, ZERO ),
  433:      $                              F( IE+1, K ), 1 )
  434:   100                CONTINUE
  435:                      DO 110 K = JE + 1, N
  436:                         CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ),
  437:      $                              C( 1, K ), 1 )
  438:                         CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ),
  439:      $                              F( 1, K ), 1 )
  440:   110                CONTINUE
  441:                      SCALE = SCALE*SCALOC
  442:                   END IF
  443: *
  444: *                 Substitute R(I,J) and L(I,J) into remaining equation.
  445: *
  446:                   IF( I.GT.1 ) THEN
  447:                      CALL ZGEMM( 'N', 'N', IS-1, NB, MB,
  448:      $                           DCMPLX( -ONE, ZERO ), A( 1, IS ), LDA,
  449:      $                           C( IS, JS ), LDC, DCMPLX( ONE, ZERO ),
  450:      $                           C( 1, JS ), LDC )
  451:                      CALL ZGEMM( 'N', 'N', IS-1, NB, MB,
  452:      $                           DCMPLX( -ONE, ZERO ), D( 1, IS ), LDD,
  453:      $                           C( IS, JS ), LDC, DCMPLX( ONE, ZERO ),
  454:      $                           F( 1, JS ), LDF )
  455:                   END IF
  456:                   IF( J.LT.Q ) THEN
  457:                      CALL ZGEMM( 'N', 'N', MB, N-JE, NB,
  458:      $                           DCMPLX( ONE, ZERO ), F( IS, JS ), LDF,
  459:      $                           B( JS, JE+1 ), LDB,
  460:      $                           DCMPLX( ONE, ZERO ), C( IS, JE+1 ),
  461:      $                           LDC )
  462:                      CALL ZGEMM( 'N', 'N', MB, N-JE, NB,
  463:      $                           DCMPLX( ONE, ZERO ), F( IS, JS ), LDF,
  464:      $                           E( JS, JE+1 ), LDE,
  465:      $                           DCMPLX( ONE, ZERO ), F( IS, JE+1 ),
  466:      $                           LDF )
  467:                   END IF
  468:   120          CONTINUE
  469:   130       CONTINUE
  470:             IF( DSCALE.NE.ZERO ) THEN
  471:                IF( IJOB.EQ.1 .OR. IJOB.EQ.3 ) THEN
  472:                   DIF = SQRT( DBLE( 2*M*N ) ) / ( DSCALE*SQRT( DSUM ) )
  473:                ELSE
  474:                   DIF = SQRT( DBLE( PQ ) ) / ( DSCALE*SQRT( DSUM ) )
  475:                END IF
  476:             END IF
  477:             IF( ISOLVE.EQ.2 .AND. IROUND.EQ.1 ) THEN
  478:                IF( NOTRAN ) THEN
  479:                   IFUNC = IJOB
  480:                END IF
  481:                SCALE2 = SCALE
  482:                CALL ZLACPY( 'F', M, N, C, LDC, WORK, M )
  483:                CALL ZLACPY( 'F', M, N, F, LDF, WORK( M*N+1 ), M )
  484:                CALL ZLASET( 'F', M, N, CZERO, CZERO, C, LDC )
  485:                CALL ZLASET( 'F', M, N, CZERO, CZERO, F, LDF )
  486:             ELSE IF( ISOLVE.EQ.2 .AND. IROUND.EQ.2 ) THEN
  487:                CALL ZLACPY( 'F', M, N, WORK, M, C, LDC )
  488:                CALL ZLACPY( 'F', M, N, WORK( M*N+1 ), M, F, LDF )
  489:                SCALE = SCALE2
  490:             END IF
  491:   150    CONTINUE
  492:       ELSE
  493: *
  494: *        Solve transposed (I, J)-subsystem
  495: *            A(I, I)' * R(I, J) + D(I, I)' * L(I, J) = C(I, J)
  496: *            R(I, J) * B(J, J)  + L(I, J) * E(J, J) = -F(I, J)
  497: *        for I = 1,2,..., P; J = Q, Q-1,..., 1
  498: *
  499:          SCALE = ONE
  500:          DO 210 I = 1, P
  501:             IS = IWORK( I )
  502:             IE = IWORK( I+1 ) - 1
  503:             MB = IE - IS + 1
  504:             DO 200 J = Q, P + 2, -1
  505:                JS = IWORK( J )
  506:                JE = IWORK( J+1 ) - 1
  507:                NB = JE - JS + 1
  508:                CALL ZTGSY2( TRANS, IFUNC, MB, NB, A( IS, IS ), LDA,
  509:      $                      B( JS, JS ), LDB, C( IS, JS ), LDC,
  510:      $                      D( IS, IS ), LDD, E( JS, JS ), LDE,
  511:      $                      F( IS, JS ), LDF, SCALOC, DSUM, DSCALE,
  512:      $                      LINFO )
  513:                IF( LINFO.GT.0 )
  514:      $            INFO = LINFO
  515:                IF( SCALOC.NE.ONE ) THEN
  516:                   DO 160 K = 1, JS - 1
  517:                      CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), C( 1, K ),
  518:      $                           1 )
  519:                      CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), F( 1, K ),
  520:      $                           1 )
  521:   160             CONTINUE
  522:                   DO 170 K = JS, JE
  523:                      CALL ZSCAL( IS-1, DCMPLX( SCALOC, ZERO ),
  524:      $                           C( 1, K ), 1 )
  525:                      CALL ZSCAL( IS-1, DCMPLX( SCALOC, ZERO ),
  526:      $                           F( 1, K ), 1 )
  527:   170             CONTINUE
  528:                   DO 180 K = JS, JE
  529:                      CALL ZSCAL( M-IE, DCMPLX( SCALOC, ZERO ),
  530:      $                           C( IE+1, K ), 1 )
  531:                      CALL ZSCAL( M-IE, DCMPLX( SCALOC, ZERO ),
  532:      $                           F( IE+1, K ), 1 )
  533:   180             CONTINUE
  534:                   DO 190 K = JE + 1, N
  535:                      CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), C( 1, K ),
  536:      $                           1 )
  537:                      CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), F( 1, K ),
  538:      $                           1 )
  539:   190             CONTINUE
  540:                   SCALE = SCALE*SCALOC
  541:                END IF
  542: *
  543: *              Substitute R(I,J) and L(I,J) into remaining equation.
  544: *
  545:                IF( J.GT.P+2 ) THEN
  546:                   CALL ZGEMM( 'N', 'C', MB, JS-1, NB,
  547:      $                        DCMPLX( ONE, ZERO ), C( IS, JS ), LDC,
  548:      $                        B( 1, JS ), LDB, DCMPLX( ONE, ZERO ),
  549:      $                        F( IS, 1 ), LDF )
  550:                   CALL ZGEMM( 'N', 'C', MB, JS-1, NB,
  551:      $                        DCMPLX( ONE, ZERO ), F( IS, JS ), LDF,
  552:      $                        E( 1, JS ), LDE, DCMPLX( ONE, ZERO ),
  553:      $                        F( IS, 1 ), LDF )
  554:                END IF
  555:                IF( I.LT.P ) THEN
  556:                   CALL ZGEMM( 'C', 'N', M-IE, NB, MB,
  557:      $                        DCMPLX( -ONE, ZERO ), A( IS, IE+1 ), LDA,
  558:      $                        C( IS, JS ), LDC, DCMPLX( ONE, ZERO ),
  559:      $                        C( IE+1, JS ), LDC )
  560:                   CALL ZGEMM( 'C', 'N', M-IE, NB, MB,
  561:      $                        DCMPLX( -ONE, ZERO ), D( IS, IE+1 ), LDD,
  562:      $                        F( IS, JS ), LDF, DCMPLX( ONE, ZERO ),
  563:      $                        C( IE+1, JS ), LDC )
  564:                END IF
  565:   200       CONTINUE
  566:   210    CONTINUE
  567:       END IF
  568: *
  569:       WORK( 1 ) = LWMIN
  570: *
  571:       RETURN
  572: *
  573: *     End of ZTGSYL
  574: *
  575:       END

CVSweb interface <joel.bertrand@systella.fr>