Annotation of rpl/lapack/lapack/ztgsy2.f, revision 1.19

1.12      bertrand    1: *> \brief \b ZTGSY2 solves the generalized Sylvester equation (unblocked algorithm).
1.9       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.17      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.17      bertrand    9: *> Download ZTGSY2 + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztgsy2.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztgsy2.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztgsy2.f">
1.9       bertrand   15: *> [TXT]</a>
1.17      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZTGSY2( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
                     22: *                          LDD, E, LDE, F, LDF, SCALE, RDSUM, RDSCAL,
                     23: *                          INFO )
1.17      bertrand   24: *
1.9       bertrand   25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          TRANS
                     27: *       INTEGER            IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, M, N
                     28: *       DOUBLE PRECISION   RDSCAL, RDSUM, SCALE
                     29: *       ..
                     30: *       .. Array Arguments ..
                     31: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), C( LDC, * ),
                     32: *      $                   D( LDD, * ), E( LDE, * ), F( LDF, * )
                     33: *       ..
1.17      bertrand   34: *
1.9       bertrand   35: *
                     36: *> \par Purpose:
                     37: *  =============
                     38: *>
                     39: *> \verbatim
                     40: *>
                     41: *> ZTGSY2 solves the generalized Sylvester equation
                     42: *>
                     43: *>             A * R - L * B = scale * C               (1)
                     44: *>             D * R - L * E = scale * F
                     45: *>
                     46: *> using Level 1 and 2 BLAS, where R and L are unknown M-by-N matrices,
                     47: *> (A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M,
                     48: *> N-by-N and M-by-N, respectively. A, B, D and E are upper triangular
                     49: *> (i.e., (A,D) and (B,E) in generalized Schur form).
                     50: *>
                     51: *> The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output
                     52: *> scaling factor chosen to avoid overflow.
                     53: *>
                     54: *> In matrix notation solving equation (1) corresponds to solve
                     55: *> Zx = scale * b, where Z is defined as
                     56: *>
                     57: *>        Z = [ kron(In, A)  -kron(B**H, Im) ]             (2)
                     58: *>            [ kron(In, D)  -kron(E**H, Im) ],
                     59: *>
                     60: *> Ik is the identity matrix of size k and X**H is the conjuguate transpose of X.
                     61: *> kron(X, Y) is the Kronecker product between the matrices X and Y.
                     62: *>
                     63: *> If TRANS = 'C', y in the conjugate transposed system Z**H*y = scale*b
                     64: *> is solved for, which is equivalent to solve for R and L in
                     65: *>
                     66: *>             A**H * R  + D**H * L   = scale * C           (3)
                     67: *>             R  * B**H + L  * E**H  = scale * -F
                     68: *>
                     69: *> This case is used to compute an estimate of Dif[(A, D), (B, E)] =
                     70: *> = sigma_min(Z) using reverse communicaton with ZLACON.
                     71: *>
                     72: *> ZTGSY2 also (IJOB >= 1) contributes to the computation in ZTGSYL
                     73: *> of an upper bound on the separation between to matrix pairs. Then
                     74: *> the input (A, D), (B, E) are sub-pencils of two matrix pairs in
                     75: *> ZTGSYL.
                     76: *> \endverbatim
                     77: *
                     78: *  Arguments:
                     79: *  ==========
                     80: *
                     81: *> \param[in] TRANS
                     82: *> \verbatim
                     83: *>          TRANS is CHARACTER*1
                     84: *>          = 'N', solve the generalized Sylvester equation (1).
                     85: *>          = 'T': solve the 'transposed' system (3).
                     86: *> \endverbatim
                     87: *>
                     88: *> \param[in] IJOB
                     89: *> \verbatim
                     90: *>          IJOB is INTEGER
                     91: *>          Specifies what kind of functionality to be performed.
                     92: *>          =0: solve (1) only.
                     93: *>          =1: A contribution from this subsystem to a Frobenius
                     94: *>              norm-based estimate of the separation between two matrix
                     95: *>              pairs is computed. (look ahead strategy is used).
                     96: *>          =2: A contribution from this subsystem to a Frobenius
                     97: *>              norm-based estimate of the separation between two matrix
                     98: *>              pairs is computed. (DGECON on sub-systems is used.)
                     99: *>          Not referenced if TRANS = 'T'.
                    100: *> \endverbatim
                    101: *>
                    102: *> \param[in] M
                    103: *> \verbatim
                    104: *>          M is INTEGER
                    105: *>          On entry, M specifies the order of A and D, and the row
                    106: *>          dimension of C, F, R and L.
                    107: *> \endverbatim
                    108: *>
                    109: *> \param[in] N
                    110: *> \verbatim
                    111: *>          N is INTEGER
                    112: *>          On entry, N specifies the order of B and E, and the column
                    113: *>          dimension of C, F, R and L.
                    114: *> \endverbatim
                    115: *>
                    116: *> \param[in] A
                    117: *> \verbatim
                    118: *>          A is COMPLEX*16 array, dimension (LDA, M)
                    119: *>          On entry, A contains an upper triangular matrix.
                    120: *> \endverbatim
                    121: *>
                    122: *> \param[in] LDA
                    123: *> \verbatim
                    124: *>          LDA is INTEGER
                    125: *>          The leading dimension of the matrix A. LDA >= max(1, M).
                    126: *> \endverbatim
                    127: *>
                    128: *> \param[in] B
                    129: *> \verbatim
                    130: *>          B is COMPLEX*16 array, dimension (LDB, N)
                    131: *>          On entry, B contains an upper triangular matrix.
                    132: *> \endverbatim
                    133: *>
                    134: *> \param[in] LDB
                    135: *> \verbatim
                    136: *>          LDB is INTEGER
                    137: *>          The leading dimension of the matrix B. LDB >= max(1, N).
                    138: *> \endverbatim
                    139: *>
                    140: *> \param[in,out] C
                    141: *> \verbatim
                    142: *>          C is COMPLEX*16 array, dimension (LDC, N)
                    143: *>          On entry, C contains the right-hand-side of the first matrix
                    144: *>          equation in (1).
                    145: *>          On exit, if IJOB = 0, C has been overwritten by the solution
                    146: *>          R.
                    147: *> \endverbatim
                    148: *>
                    149: *> \param[in] LDC
                    150: *> \verbatim
                    151: *>          LDC is INTEGER
                    152: *>          The leading dimension of the matrix C. LDC >= max(1, M).
                    153: *> \endverbatim
                    154: *>
                    155: *> \param[in] D
                    156: *> \verbatim
                    157: *>          D is COMPLEX*16 array, dimension (LDD, M)
                    158: *>          On entry, D contains an upper triangular matrix.
                    159: *> \endverbatim
                    160: *>
                    161: *> \param[in] LDD
                    162: *> \verbatim
                    163: *>          LDD is INTEGER
                    164: *>          The leading dimension of the matrix D. LDD >= max(1, M).
                    165: *> \endverbatim
                    166: *>
                    167: *> \param[in] E
                    168: *> \verbatim
                    169: *>          E is COMPLEX*16 array, dimension (LDE, N)
                    170: *>          On entry, E contains an upper triangular matrix.
                    171: *> \endverbatim
                    172: *>
                    173: *> \param[in] LDE
                    174: *> \verbatim
                    175: *>          LDE is INTEGER
                    176: *>          The leading dimension of the matrix E. LDE >= max(1, N).
                    177: *> \endverbatim
                    178: *>
                    179: *> \param[in,out] F
                    180: *> \verbatim
                    181: *>          F is COMPLEX*16 array, dimension (LDF, N)
                    182: *>          On entry, F contains the right-hand-side of the second matrix
                    183: *>          equation in (1).
                    184: *>          On exit, if IJOB = 0, F has been overwritten by the solution
                    185: *>          L.
                    186: *> \endverbatim
                    187: *>
                    188: *> \param[in] LDF
                    189: *> \verbatim
                    190: *>          LDF is INTEGER
                    191: *>          The leading dimension of the matrix F. LDF >= max(1, M).
                    192: *> \endverbatim
                    193: *>
                    194: *> \param[out] SCALE
                    195: *> \verbatim
                    196: *>          SCALE is DOUBLE PRECISION
                    197: *>          On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions
                    198: *>          R and L (C and F on entry) will hold the solutions to a
                    199: *>          slightly perturbed system but the input matrices A, B, D and
                    200: *>          E have not been changed. If SCALE = 0, R and L will hold the
                    201: *>          solutions to the homogeneous system with C = F = 0.
                    202: *>          Normally, SCALE = 1.
                    203: *> \endverbatim
                    204: *>
                    205: *> \param[in,out] RDSUM
                    206: *> \verbatim
                    207: *>          RDSUM is DOUBLE PRECISION
                    208: *>          On entry, the sum of squares of computed contributions to
                    209: *>          the Dif-estimate under computation by ZTGSYL, where the
                    210: *>          scaling factor RDSCAL (see below) has been factored out.
                    211: *>          On exit, the corresponding sum of squares updated with the
                    212: *>          contributions from the current sub-system.
                    213: *>          If TRANS = 'T' RDSUM is not touched.
                    214: *>          NOTE: RDSUM only makes sense when ZTGSY2 is called by
                    215: *>          ZTGSYL.
                    216: *> \endverbatim
                    217: *>
                    218: *> \param[in,out] RDSCAL
                    219: *> \verbatim
                    220: *>          RDSCAL is DOUBLE PRECISION
                    221: *>          On entry, scaling factor used to prevent overflow in RDSUM.
                    222: *>          On exit, RDSCAL is updated w.r.t. the current contributions
                    223: *>          in RDSUM.
                    224: *>          If TRANS = 'T', RDSCAL is not touched.
                    225: *>          NOTE: RDSCAL only makes sense when ZTGSY2 is called by
                    226: *>          ZTGSYL.
                    227: *> \endverbatim
                    228: *>
                    229: *> \param[out] INFO
                    230: *> \verbatim
                    231: *>          INFO is INTEGER
                    232: *>          On exit, if INFO is set to
                    233: *>            =0: Successful exit
                    234: *>            <0: If INFO = -i, input argument number i is illegal.
                    235: *>            >0: The matrix pairs (A, D) and (B, E) have common or very
                    236: *>                close eigenvalues.
                    237: *> \endverbatim
                    238: *
                    239: *  Authors:
                    240: *  ========
                    241: *
1.17      bertrand  242: *> \author Univ. of Tennessee
                    243: *> \author Univ. of California Berkeley
                    244: *> \author Univ. of Colorado Denver
                    245: *> \author NAG Ltd.
1.9       bertrand  246: *
1.17      bertrand  247: *> \date December 2016
1.9       bertrand  248: *
                    249: *> \ingroup complex16SYauxiliary
                    250: *
                    251: *> \par Contributors:
                    252: *  ==================
                    253: *>
                    254: *>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
                    255: *>     Umea University, S-901 87 Umea, Sweden.
                    256: *
                    257: *  =====================================================================
1.1       bertrand  258:       SUBROUTINE ZTGSY2( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
                    259:      $                   LDD, E, LDE, F, LDF, SCALE, RDSUM, RDSCAL,
                    260:      $                   INFO )
                    261: *
1.17      bertrand  262: *  -- LAPACK auxiliary routine (version 3.7.0) --
1.1       bertrand  263: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    264: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.17      bertrand  265: *     December 2016
1.1       bertrand  266: *
                    267: *     .. Scalar Arguments ..
                    268:       CHARACTER          TRANS
                    269:       INTEGER            IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, M, N
                    270:       DOUBLE PRECISION   RDSCAL, RDSUM, SCALE
                    271: *     ..
                    272: *     .. Array Arguments ..
                    273:       COMPLEX*16         A( LDA, * ), B( LDB, * ), C( LDC, * ),
                    274:      $                   D( LDD, * ), E( LDE, * ), F( LDF, * )
                    275: *     ..
                    276: *
                    277: *  =====================================================================
                    278: *
                    279: *     .. Parameters ..
                    280:       DOUBLE PRECISION   ZERO, ONE
                    281:       INTEGER            LDZ
                    282:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, LDZ = 2 )
                    283: *     ..
                    284: *     .. Local Scalars ..
                    285:       LOGICAL            NOTRAN
                    286:       INTEGER            I, IERR, J, K
                    287:       DOUBLE PRECISION   SCALOC
                    288:       COMPLEX*16         ALPHA
                    289: *     ..
                    290: *     .. Local Arrays ..
                    291:       INTEGER            IPIV( LDZ ), JPIV( LDZ )
                    292:       COMPLEX*16         RHS( LDZ ), Z( LDZ, LDZ )
                    293: *     ..
                    294: *     .. External Functions ..
                    295:       LOGICAL            LSAME
                    296:       EXTERNAL           LSAME
                    297: *     ..
                    298: *     .. External Subroutines ..
                    299:       EXTERNAL           XERBLA, ZAXPY, ZGESC2, ZGETC2, ZLATDF, ZSCAL
                    300: *     ..
                    301: *     .. Intrinsic Functions ..
                    302:       INTRINSIC          DCMPLX, DCONJG, MAX
                    303: *     ..
                    304: *     .. Executable Statements ..
                    305: *
                    306: *     Decode and test input parameters
                    307: *
                    308:       INFO = 0
                    309:       IERR = 0
                    310:       NOTRAN = LSAME( TRANS, 'N' )
                    311:       IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
                    312:          INFO = -1
                    313:       ELSE IF( NOTRAN ) THEN
                    314:          IF( ( IJOB.LT.0 ) .OR. ( IJOB.GT.2 ) ) THEN
                    315:             INFO = -2
                    316:          END IF
                    317:       END IF
                    318:       IF( INFO.EQ.0 ) THEN
                    319:          IF( M.LE.0 ) THEN
                    320:             INFO = -3
                    321:          ELSE IF( N.LE.0 ) THEN
                    322:             INFO = -4
                    323:          ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
1.15      bertrand  324:             INFO = -6
1.1       bertrand  325:          ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    326:             INFO = -8
                    327:          ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
                    328:             INFO = -10
                    329:          ELSE IF( LDD.LT.MAX( 1, M ) ) THEN
                    330:             INFO = -12
                    331:          ELSE IF( LDE.LT.MAX( 1, N ) ) THEN
                    332:             INFO = -14
                    333:          ELSE IF( LDF.LT.MAX( 1, M ) ) THEN
                    334:             INFO = -16
                    335:          END IF
                    336:       END IF
                    337:       IF( INFO.NE.0 ) THEN
                    338:          CALL XERBLA( 'ZTGSY2', -INFO )
                    339:          RETURN
                    340:       END IF
                    341: *
                    342:       IF( NOTRAN ) THEN
                    343: *
                    344: *        Solve (I, J) - system
                    345: *           A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J)
                    346: *           D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J)
                    347: *        for I = M, M - 1, ..., 1; J = 1, 2, ..., N
                    348: *
                    349:          SCALE = ONE
                    350:          SCALOC = ONE
                    351:          DO 30 J = 1, N
                    352:             DO 20 I = M, 1, -1
                    353: *
                    354: *              Build 2 by 2 system
                    355: *
                    356:                Z( 1, 1 ) = A( I, I )
                    357:                Z( 2, 1 ) = D( I, I )
                    358:                Z( 1, 2 ) = -B( J, J )
                    359:                Z( 2, 2 ) = -E( J, J )
                    360: *
                    361: *              Set up right hand side(s)
                    362: *
                    363:                RHS( 1 ) = C( I, J )
                    364:                RHS( 2 ) = F( I, J )
                    365: *
                    366: *              Solve Z * x = RHS
                    367: *
                    368:                CALL ZGETC2( LDZ, Z, LDZ, IPIV, JPIV, IERR )
                    369:                IF( IERR.GT.0 )
                    370:      $            INFO = IERR
                    371:                IF( IJOB.EQ.0 ) THEN
                    372:                   CALL ZGESC2( LDZ, Z, LDZ, RHS, IPIV, JPIV, SCALOC )
                    373:                   IF( SCALOC.NE.ONE ) THEN
                    374:                      DO 10 K = 1, N
                    375:                         CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ),
                    376:      $                              C( 1, K ), 1 )
                    377:                         CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ),
                    378:      $                              F( 1, K ), 1 )
                    379:    10                CONTINUE
                    380:                      SCALE = SCALE*SCALOC
                    381:                   END IF
                    382:                ELSE
                    383:                   CALL ZLATDF( IJOB, LDZ, Z, LDZ, RHS, RDSUM, RDSCAL,
                    384:      $                         IPIV, JPIV )
                    385:                END IF
                    386: *
                    387: *              Unpack solution vector(s)
                    388: *
                    389:                C( I, J ) = RHS( 1 )
                    390:                F( I, J ) = RHS( 2 )
                    391: *
                    392: *              Substitute R(I, J) and L(I, J) into remaining equation.
                    393: *
                    394:                IF( I.GT.1 ) THEN
                    395:                   ALPHA = -RHS( 1 )
                    396:                   CALL ZAXPY( I-1, ALPHA, A( 1, I ), 1, C( 1, J ), 1 )
                    397:                   CALL ZAXPY( I-1, ALPHA, D( 1, I ), 1, F( 1, J ), 1 )
                    398:                END IF
                    399:                IF( J.LT.N ) THEN
                    400:                   CALL ZAXPY( N-J, RHS( 2 ), B( J, J+1 ), LDB,
                    401:      $                        C( I, J+1 ), LDC )
                    402:                   CALL ZAXPY( N-J, RHS( 2 ), E( J, J+1 ), LDE,
                    403:      $                        F( I, J+1 ), LDF )
                    404:                END IF
                    405: *
                    406:    20       CONTINUE
                    407:    30    CONTINUE
                    408:       ELSE
                    409: *
                    410: *        Solve transposed (I, J) - system:
1.8       bertrand  411: *           A(I, I)**H * R(I, J) + D(I, I)**H * L(J, J) = C(I, J)
1.1       bertrand  412: *           R(I, I) * B(J, J) + L(I, J) * E(J, J)   = -F(I, J)
                    413: *        for I = 1, 2, ..., M, J = N, N - 1, ..., 1
                    414: *
                    415:          SCALE = ONE
                    416:          SCALOC = ONE
                    417:          DO 80 I = 1, M
                    418:             DO 70 J = N, 1, -1
                    419: *
1.8       bertrand  420: *              Build 2 by 2 system Z**H
1.1       bertrand  421: *
                    422:                Z( 1, 1 ) = DCONJG( A( I, I ) )
                    423:                Z( 2, 1 ) = -DCONJG( B( J, J ) )
                    424:                Z( 1, 2 ) = DCONJG( D( I, I ) )
                    425:                Z( 2, 2 ) = -DCONJG( E( J, J ) )
                    426: *
                    427: *
                    428: *              Set up right hand side(s)
                    429: *
                    430:                RHS( 1 ) = C( I, J )
                    431:                RHS( 2 ) = F( I, J )
                    432: *
1.8       bertrand  433: *              Solve Z**H * x = RHS
1.1       bertrand  434: *
                    435:                CALL ZGETC2( LDZ, Z, LDZ, IPIV, JPIV, IERR )
                    436:                IF( IERR.GT.0 )
                    437:      $            INFO = IERR
                    438:                CALL ZGESC2( LDZ, Z, LDZ, RHS, IPIV, JPIV, SCALOC )
                    439:                IF( SCALOC.NE.ONE ) THEN
                    440:                   DO 40 K = 1, N
                    441:                      CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), C( 1, K ),
                    442:      $                           1 )
                    443:                      CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), F( 1, K ),
                    444:      $                           1 )
                    445:    40             CONTINUE
                    446:                   SCALE = SCALE*SCALOC
                    447:                END IF
                    448: *
                    449: *              Unpack solution vector(s)
                    450: *
                    451:                C( I, J ) = RHS( 1 )
                    452:                F( I, J ) = RHS( 2 )
                    453: *
                    454: *              Substitute R(I, J) and L(I, J) into remaining equation.
                    455: *
                    456:                DO 50 K = 1, J - 1
                    457:                   F( I, K ) = F( I, K ) + RHS( 1 )*DCONJG( B( K, J ) ) +
                    458:      $                        RHS( 2 )*DCONJG( E( K, J ) )
                    459:    50          CONTINUE
                    460:                DO 60 K = I + 1, M
                    461:                   C( K, J ) = C( K, J ) - DCONJG( A( I, K ) )*RHS( 1 ) -
                    462:      $                        DCONJG( D( I, K ) )*RHS( 2 )
                    463:    60          CONTINUE
                    464: *
                    465:    70       CONTINUE
                    466:    80    CONTINUE
                    467:       END IF
                    468:       RETURN
                    469: *
                    470: *     End of ZTGSY2
                    471: *
                    472:       END

CVSweb interface <joel.bertrand@systella.fr>