File:  [local] / rpl / lapack / lapack / ztgsna.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Fri Aug 6 15:29:02 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Cohérence

    1:       SUBROUTINE ZTGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL,
    2:      $                   LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK,
    3:      $                   IWORK, INFO )
    4: *
    5: *  -- LAPACK routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     .. Scalar Arguments ..
   11:       CHARACTER          HOWMNY, JOB
   12:       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N
   13: *     ..
   14: *     .. Array Arguments ..
   15:       LOGICAL            SELECT( * )
   16:       INTEGER            IWORK( * )
   17:       DOUBLE PRECISION   DIF( * ), S( * )
   18:       COMPLEX*16         A( LDA, * ), B( LDB, * ), VL( LDVL, * ),
   19:      $                   VR( LDVR, * ), WORK( * )
   20: *     ..
   21: *
   22: *  Purpose
   23: *  =======
   24: *
   25: *  ZTGSNA estimates reciprocal condition numbers for specified
   26: *  eigenvalues and/or eigenvectors of a matrix pair (A, B).
   27: *
   28: *  (A, B) must be in generalized Schur canonical form, that is, A and
   29: *  B are both upper triangular.
   30: *
   31: *  Arguments
   32: *  =========
   33: *
   34: *  JOB     (input) CHARACTER*1
   35: *          Specifies whether condition numbers are required for
   36: *          eigenvalues (S) or eigenvectors (DIF):
   37: *          = 'E': for eigenvalues only (S);
   38: *          = 'V': for eigenvectors only (DIF);
   39: *          = 'B': for both eigenvalues and eigenvectors (S and DIF).
   40: *
   41: *  HOWMNY  (input) CHARACTER*1
   42: *          = 'A': compute condition numbers for all eigenpairs;
   43: *          = 'S': compute condition numbers for selected eigenpairs
   44: *                 specified by the array SELECT.
   45: *
   46: *  SELECT  (input) LOGICAL array, dimension (N)
   47: *          If HOWMNY = 'S', SELECT specifies the eigenpairs for which
   48: *          condition numbers are required. To select condition numbers
   49: *          for the corresponding j-th eigenvalue and/or eigenvector,
   50: *          SELECT(j) must be set to .TRUE..
   51: *          If HOWMNY = 'A', SELECT is not referenced.
   52: *
   53: *  N       (input) INTEGER
   54: *          The order of the square matrix pair (A, B). N >= 0.
   55: *
   56: *  A       (input) COMPLEX*16 array, dimension (LDA,N)
   57: *          The upper triangular matrix A in the pair (A,B).
   58: *
   59: *  LDA     (input) INTEGER
   60: *          The leading dimension of the array A. LDA >= max(1,N).
   61: *
   62: *  B       (input) COMPLEX*16 array, dimension (LDB,N)
   63: *          The upper triangular matrix B in the pair (A, B).
   64: *
   65: *  LDB     (input) INTEGER
   66: *          The leading dimension of the array B. LDB >= max(1,N).
   67: *
   68: *  VL      (input) COMPLEX*16 array, dimension (LDVL,M)
   69: *          IF JOB = 'E' or 'B', VL must contain left eigenvectors of
   70: *          (A, B), corresponding to the eigenpairs specified by HOWMNY
   71: *          and SELECT.  The eigenvectors must be stored in consecutive
   72: *          columns of VL, as returned by ZTGEVC.
   73: *          If JOB = 'V', VL is not referenced.
   74: *
   75: *  LDVL    (input) INTEGER
   76: *          The leading dimension of the array VL. LDVL >= 1; and
   77: *          If JOB = 'E' or 'B', LDVL >= N.
   78: *
   79: *  VR      (input) COMPLEX*16 array, dimension (LDVR,M)
   80: *          IF JOB = 'E' or 'B', VR must contain right eigenvectors of
   81: *          (A, B), corresponding to the eigenpairs specified by HOWMNY
   82: *          and SELECT.  The eigenvectors must be stored in consecutive
   83: *          columns of VR, as returned by ZTGEVC.
   84: *          If JOB = 'V', VR is not referenced.
   85: *
   86: *  LDVR    (input) INTEGER
   87: *          The leading dimension of the array VR. LDVR >= 1;
   88: *          If JOB = 'E' or 'B', LDVR >= N.
   89: *
   90: *  S       (output) DOUBLE PRECISION array, dimension (MM)
   91: *          If JOB = 'E' or 'B', the reciprocal condition numbers of the
   92: *          selected eigenvalues, stored in consecutive elements of the
   93: *          array.
   94: *          If JOB = 'V', S is not referenced.
   95: *
   96: *  DIF     (output) DOUBLE PRECISION array, dimension (MM)
   97: *          If JOB = 'V' or 'B', the estimated reciprocal condition
   98: *          numbers of the selected eigenvectors, stored in consecutive
   99: *          elements of the array.
  100: *          If the eigenvalues cannot be reordered to compute DIF(j),
  101: *          DIF(j) is set to 0; this can only occur when the true value
  102: *          would be very small anyway.
  103: *          For each eigenvalue/vector specified by SELECT, DIF stores
  104: *          a Frobenius norm-based estimate of Difl.
  105: *          If JOB = 'E', DIF is not referenced.
  106: *
  107: *  MM      (input) INTEGER
  108: *          The number of elements in the arrays S and DIF. MM >= M.
  109: *
  110: *  M       (output) INTEGER
  111: *          The number of elements of the arrays S and DIF used to store
  112: *          the specified condition numbers; for each selected eigenvalue
  113: *          one element is used. If HOWMNY = 'A', M is set to N.
  114: *
  115: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
  116: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  117: *
  118: *  LWORK  (input) INTEGER
  119: *          The dimension of the array WORK. LWORK >= max(1,N).
  120: *          If JOB = 'V' or 'B', LWORK >= max(1,2*N*N).
  121: *
  122: *  IWORK   (workspace) INTEGER array, dimension (N+2)
  123: *          If JOB = 'E', IWORK is not referenced.
  124: *
  125: *  INFO    (output) INTEGER
  126: *          = 0: Successful exit
  127: *          < 0: If INFO = -i, the i-th argument had an illegal value
  128: *
  129: *  Further Details
  130: *  ===============
  131: *
  132: *  The reciprocal of the condition number of the i-th generalized
  133: *  eigenvalue w = (a, b) is defined as
  134: *
  135: *          S(I) = (|v'Au|**2 + |v'Bu|**2)**(1/2) / (norm(u)*norm(v))
  136: *
  137: *  where u and v are the right and left eigenvectors of (A, B)
  138: *  corresponding to w; |z| denotes the absolute value of the complex
  139: *  number, and norm(u) denotes the 2-norm of the vector u. The pair
  140: *  (a, b) corresponds to an eigenvalue w = a/b (= v'Au/v'Bu) of the
  141: *  matrix pair (A, B). If both a and b equal zero, then (A,B) is
  142: *  singular and S(I) = -1 is returned.
  143: *
  144: *  An approximate error bound on the chordal distance between the i-th
  145: *  computed generalized eigenvalue w and the corresponding exact
  146: *  eigenvalue lambda is
  147: *
  148: *          chord(w, lambda) <=   EPS * norm(A, B) / S(I),
  149: *
  150: *  where EPS is the machine precision.
  151: *
  152: *  The reciprocal of the condition number of the right eigenvector u
  153: *  and left eigenvector v corresponding to the generalized eigenvalue w
  154: *  is defined as follows. Suppose
  155: *
  156: *                   (A, B) = ( a   *  ) ( b  *  )  1
  157: *                            ( 0  A22 ),( 0 B22 )  n-1
  158: *                              1  n-1     1 n-1
  159: *
  160: *  Then the reciprocal condition number DIF(I) is
  161: *
  162: *          Difl[(a, b), (A22, B22)]  = sigma-min( Zl )
  163: *
  164: *  where sigma-min(Zl) denotes the smallest singular value of
  165: *
  166: *         Zl = [ kron(a, In-1) -kron(1, A22) ]
  167: *              [ kron(b, In-1) -kron(1, B22) ].
  168: *
  169: *  Here In-1 is the identity matrix of size n-1 and X' is the conjugate
  170: *  transpose of X. kron(X, Y) is the Kronecker product between the
  171: *  matrices X and Y.
  172: *
  173: *  We approximate the smallest singular value of Zl with an upper
  174: *  bound. This is done by ZLATDF.
  175: *
  176: *  An approximate error bound for a computed eigenvector VL(i) or
  177: *  VR(i) is given by
  178: *
  179: *                      EPS * norm(A, B) / DIF(i).
  180: *
  181: *  See ref. [2-3] for more details and further references.
  182: *
  183: *  Based on contributions by
  184: *     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
  185: *     Umea University, S-901 87 Umea, Sweden.
  186: *
  187: *  References
  188: *  ==========
  189: *
  190: *  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
  191: *      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
  192: *      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
  193: *      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
  194: *
  195: *  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
  196: *      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
  197: *      Estimation: Theory, Algorithms and Software, Report
  198: *      UMINF - 94.04, Department of Computing Science, Umea University,
  199: *      S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.
  200: *      To appear in Numerical Algorithms, 1996.
  201: *
  202: *  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
  203: *      for Solving the Generalized Sylvester Equation and Estimating the
  204: *      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
  205: *      Department of Computing Science, Umea University, S-901 87 Umea,
  206: *      Sweden, December 1993, Revised April 1994, Also as LAPACK Working
  207: *      Note 75.
  208: *      To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996.
  209: *
  210: *  =====================================================================
  211: *
  212: *     .. Parameters ..
  213:       DOUBLE PRECISION   ZERO, ONE
  214:       INTEGER            IDIFJB
  215:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, IDIFJB = 3 )
  216: *     ..
  217: *     .. Local Scalars ..
  218:       LOGICAL            LQUERY, SOMCON, WANTBH, WANTDF, WANTS
  219:       INTEGER            I, IERR, IFST, ILST, K, KS, LWMIN, N1, N2
  220:       DOUBLE PRECISION   BIGNUM, COND, EPS, LNRM, RNRM, SCALE, SMLNUM
  221:       COMPLEX*16         YHAX, YHBX
  222: *     ..
  223: *     .. Local Arrays ..
  224:       COMPLEX*16         DUMMY( 1 ), DUMMY1( 1 )
  225: *     ..
  226: *     .. External Functions ..
  227:       LOGICAL            LSAME
  228:       DOUBLE PRECISION   DLAMCH, DLAPY2, DZNRM2
  229:       COMPLEX*16         ZDOTC
  230:       EXTERNAL           LSAME, DLAMCH, DLAPY2, DZNRM2, ZDOTC
  231: *     ..
  232: *     .. External Subroutines ..
  233:       EXTERNAL           DLABAD, XERBLA, ZGEMV, ZLACPY, ZTGEXC, ZTGSYL
  234: *     ..
  235: *     .. Intrinsic Functions ..
  236:       INTRINSIC          ABS, DCMPLX, MAX
  237: *     ..
  238: *     .. Executable Statements ..
  239: *
  240: *     Decode and test the input parameters
  241: *
  242:       WANTBH = LSAME( JOB, 'B' )
  243:       WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
  244:       WANTDF = LSAME( JOB, 'V' ) .OR. WANTBH
  245: *
  246:       SOMCON = LSAME( HOWMNY, 'S' )
  247: *
  248:       INFO = 0
  249:       LQUERY = ( LWORK.EQ.-1 )
  250: *
  251:       IF( .NOT.WANTS .AND. .NOT.WANTDF ) THEN
  252:          INFO = -1
  253:       ELSE IF( .NOT.LSAME( HOWMNY, 'A' ) .AND. .NOT.SOMCON ) THEN
  254:          INFO = -2
  255:       ELSE IF( N.LT.0 ) THEN
  256:          INFO = -4
  257:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  258:          INFO = -6
  259:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  260:          INFO = -8
  261:       ELSE IF( WANTS .AND. LDVL.LT.N ) THEN
  262:          INFO = -10
  263:       ELSE IF( WANTS .AND. LDVR.LT.N ) THEN
  264:          INFO = -12
  265:       ELSE
  266: *
  267: *        Set M to the number of eigenpairs for which condition numbers
  268: *        are required, and test MM.
  269: *
  270:          IF( SOMCON ) THEN
  271:             M = 0
  272:             DO 10 K = 1, N
  273:                IF( SELECT( K ) )
  274:      $            M = M + 1
  275:    10       CONTINUE
  276:          ELSE
  277:             M = N
  278:          END IF
  279: *
  280:          IF( N.EQ.0 ) THEN
  281:             LWMIN = 1
  282:          ELSE IF( LSAME( JOB, 'V' ) .OR. LSAME( JOB, 'B' ) ) THEN
  283:             LWMIN = 2*N*N
  284:          ELSE
  285:             LWMIN = N
  286:          END IF
  287:          WORK( 1 ) = LWMIN
  288: *
  289:          IF( MM.LT.M ) THEN
  290:             INFO = -15
  291:          ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  292:             INFO = -18
  293:          END IF
  294:       END IF
  295: *
  296:       IF( INFO.NE.0 ) THEN
  297:          CALL XERBLA( 'ZTGSNA', -INFO )
  298:          RETURN
  299:       ELSE IF( LQUERY ) THEN
  300:          RETURN
  301:       END IF
  302: *
  303: *     Quick return if possible
  304: *
  305:       IF( N.EQ.0 )
  306:      $   RETURN
  307: *
  308: *     Get machine constants
  309: *
  310:       EPS = DLAMCH( 'P' )
  311:       SMLNUM = DLAMCH( 'S' ) / EPS
  312:       BIGNUM = ONE / SMLNUM
  313:       CALL DLABAD( SMLNUM, BIGNUM )
  314:       KS = 0
  315:       DO 20 K = 1, N
  316: *
  317: *        Determine whether condition numbers are required for the k-th
  318: *        eigenpair.
  319: *
  320:          IF( SOMCON ) THEN
  321:             IF( .NOT.SELECT( K ) )
  322:      $         GO TO 20
  323:          END IF
  324: *
  325:          KS = KS + 1
  326: *
  327:          IF( WANTS ) THEN
  328: *
  329: *           Compute the reciprocal condition number of the k-th
  330: *           eigenvalue.
  331: *
  332:             RNRM = DZNRM2( N, VR( 1, KS ), 1 )
  333:             LNRM = DZNRM2( N, VL( 1, KS ), 1 )
  334:             CALL ZGEMV( 'N', N, N, DCMPLX( ONE, ZERO ), A, LDA,
  335:      $                  VR( 1, KS ), 1, DCMPLX( ZERO, ZERO ), WORK, 1 )
  336:             YHAX = ZDOTC( N, WORK, 1, VL( 1, KS ), 1 )
  337:             CALL ZGEMV( 'N', N, N, DCMPLX( ONE, ZERO ), B, LDB,
  338:      $                  VR( 1, KS ), 1, DCMPLX( ZERO, ZERO ), WORK, 1 )
  339:             YHBX = ZDOTC( N, WORK, 1, VL( 1, KS ), 1 )
  340:             COND = DLAPY2( ABS( YHAX ), ABS( YHBX ) )
  341:             IF( COND.EQ.ZERO ) THEN
  342:                S( KS ) = -ONE
  343:             ELSE
  344:                S( KS ) = COND / ( RNRM*LNRM )
  345:             END IF
  346:          END IF
  347: *
  348:          IF( WANTDF ) THEN
  349:             IF( N.EQ.1 ) THEN
  350:                DIF( KS ) = DLAPY2( ABS( A( 1, 1 ) ), ABS( B( 1, 1 ) ) )
  351:             ELSE
  352: *
  353: *              Estimate the reciprocal condition number of the k-th
  354: *              eigenvectors.
  355: *
  356: *              Copy the matrix (A, B) to the array WORK and move the
  357: *              (k,k)th pair to the (1,1) position.
  358: *
  359:                CALL ZLACPY( 'Full', N, N, A, LDA, WORK, N )
  360:                CALL ZLACPY( 'Full', N, N, B, LDB, WORK( N*N+1 ), N )
  361:                IFST = K
  362:                ILST = 1
  363: *
  364:                CALL ZTGEXC( .FALSE., .FALSE., N, WORK, N, WORK( N*N+1 ),
  365:      $                      N, DUMMY, 1, DUMMY1, 1, IFST, ILST, IERR )
  366: *
  367:                IF( IERR.GT.0 ) THEN
  368: *
  369: *                 Ill-conditioned problem - swap rejected.
  370: *
  371:                   DIF( KS ) = ZERO
  372:                ELSE
  373: *
  374: *                 Reordering successful, solve generalized Sylvester
  375: *                 equation for R and L,
  376: *                            A22 * R - L * A11 = A12
  377: *                            B22 * R - L * B11 = B12,
  378: *                 and compute estimate of Difl[(A11,B11), (A22, B22)].
  379: *
  380:                   N1 = 1
  381:                   N2 = N - N1
  382:                   I = N*N + 1
  383:                   CALL ZTGSYL( 'N', IDIFJB, N2, N1, WORK( N*N1+N1+1 ),
  384:      $                         N, WORK, N, WORK( N1+1 ), N,
  385:      $                         WORK( N*N1+N1+I ), N, WORK( I ), N,
  386:      $                         WORK( N1+I ), N, SCALE, DIF( KS ), DUMMY,
  387:      $                         1, IWORK, IERR )
  388:                END IF
  389:             END IF
  390:          END IF
  391: *
  392:    20 CONTINUE
  393:       WORK( 1 ) = LWMIN
  394:       RETURN
  395: *
  396: *     End of ZTGSNA
  397: *
  398:       END

CVSweb interface <joel.bertrand@systella.fr>