Annotation of rpl/lapack/lapack/ztgsna.f, revision 1.9

1.9     ! bertrand    1: *> \brief \b ZTGSNA
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZTGSNA + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztgsna.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztgsna.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztgsna.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZTGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL,
        !            22: *                          LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK,
        !            23: *                          IWORK, INFO )
        !            24: * 
        !            25: *       .. Scalar Arguments ..
        !            26: *       CHARACTER          HOWMNY, JOB
        !            27: *       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N
        !            28: *       ..
        !            29: *       .. Array Arguments ..
        !            30: *       LOGICAL            SELECT( * )
        !            31: *       INTEGER            IWORK( * )
        !            32: *       DOUBLE PRECISION   DIF( * ), S( * )
        !            33: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), VL( LDVL, * ),
        !            34: *      $                   VR( LDVR, * ), WORK( * )
        !            35: *       ..
        !            36: *  
        !            37: *
        !            38: *> \par Purpose:
        !            39: *  =============
        !            40: *>
        !            41: *> \verbatim
        !            42: *>
        !            43: *> ZTGSNA estimates reciprocal condition numbers for specified
        !            44: *> eigenvalues and/or eigenvectors of a matrix pair (A, B).
        !            45: *>
        !            46: *> (A, B) must be in generalized Schur canonical form, that is, A and
        !            47: *> B are both upper triangular.
        !            48: *> \endverbatim
        !            49: *
        !            50: *  Arguments:
        !            51: *  ==========
        !            52: *
        !            53: *> \param[in] JOB
        !            54: *> \verbatim
        !            55: *>          JOB is CHARACTER*1
        !            56: *>          Specifies whether condition numbers are required for
        !            57: *>          eigenvalues (S) or eigenvectors (DIF):
        !            58: *>          = 'E': for eigenvalues only (S);
        !            59: *>          = 'V': for eigenvectors only (DIF);
        !            60: *>          = 'B': for both eigenvalues and eigenvectors (S and DIF).
        !            61: *> \endverbatim
        !            62: *>
        !            63: *> \param[in] HOWMNY
        !            64: *> \verbatim
        !            65: *>          HOWMNY is CHARACTER*1
        !            66: *>          = 'A': compute condition numbers for all eigenpairs;
        !            67: *>          = 'S': compute condition numbers for selected eigenpairs
        !            68: *>                 specified by the array SELECT.
        !            69: *> \endverbatim
        !            70: *>
        !            71: *> \param[in] SELECT
        !            72: *> \verbatim
        !            73: *>          SELECT is LOGICAL array, dimension (N)
        !            74: *>          If HOWMNY = 'S', SELECT specifies the eigenpairs for which
        !            75: *>          condition numbers are required. To select condition numbers
        !            76: *>          for the corresponding j-th eigenvalue and/or eigenvector,
        !            77: *>          SELECT(j) must be set to .TRUE..
        !            78: *>          If HOWMNY = 'A', SELECT is not referenced.
        !            79: *> \endverbatim
        !            80: *>
        !            81: *> \param[in] N
        !            82: *> \verbatim
        !            83: *>          N is INTEGER
        !            84: *>          The order of the square matrix pair (A, B). N >= 0.
        !            85: *> \endverbatim
        !            86: *>
        !            87: *> \param[in] A
        !            88: *> \verbatim
        !            89: *>          A is COMPLEX*16 array, dimension (LDA,N)
        !            90: *>          The upper triangular matrix A in the pair (A,B).
        !            91: *> \endverbatim
        !            92: *>
        !            93: *> \param[in] LDA
        !            94: *> \verbatim
        !            95: *>          LDA is INTEGER
        !            96: *>          The leading dimension of the array A. LDA >= max(1,N).
        !            97: *> \endverbatim
        !            98: *>
        !            99: *> \param[in] B
        !           100: *> \verbatim
        !           101: *>          B is COMPLEX*16 array, dimension (LDB,N)
        !           102: *>          The upper triangular matrix B in the pair (A, B).
        !           103: *> \endverbatim
        !           104: *>
        !           105: *> \param[in] LDB
        !           106: *> \verbatim
        !           107: *>          LDB is INTEGER
        !           108: *>          The leading dimension of the array B. LDB >= max(1,N).
        !           109: *> \endverbatim
        !           110: *>
        !           111: *> \param[in] VL
        !           112: *> \verbatim
        !           113: *>          VL is COMPLEX*16 array, dimension (LDVL,M)
        !           114: *>          IF JOB = 'E' or 'B', VL must contain left eigenvectors of
        !           115: *>          (A, B), corresponding to the eigenpairs specified by HOWMNY
        !           116: *>          and SELECT.  The eigenvectors must be stored in consecutive
        !           117: *>          columns of VL, as returned by ZTGEVC.
        !           118: *>          If JOB = 'V', VL is not referenced.
        !           119: *> \endverbatim
        !           120: *>
        !           121: *> \param[in] LDVL
        !           122: *> \verbatim
        !           123: *>          LDVL is INTEGER
        !           124: *>          The leading dimension of the array VL. LDVL >= 1; and
        !           125: *>          If JOB = 'E' or 'B', LDVL >= N.
        !           126: *> \endverbatim
        !           127: *>
        !           128: *> \param[in] VR
        !           129: *> \verbatim
        !           130: *>          VR is COMPLEX*16 array, dimension (LDVR,M)
        !           131: *>          IF JOB = 'E' or 'B', VR must contain right eigenvectors of
        !           132: *>          (A, B), corresponding to the eigenpairs specified by HOWMNY
        !           133: *>          and SELECT.  The eigenvectors must be stored in consecutive
        !           134: *>          columns of VR, as returned by ZTGEVC.
        !           135: *>          If JOB = 'V', VR is not referenced.
        !           136: *> \endverbatim
        !           137: *>
        !           138: *> \param[in] LDVR
        !           139: *> \verbatim
        !           140: *>          LDVR is INTEGER
        !           141: *>          The leading dimension of the array VR. LDVR >= 1;
        !           142: *>          If JOB = 'E' or 'B', LDVR >= N.
        !           143: *> \endverbatim
        !           144: *>
        !           145: *> \param[out] S
        !           146: *> \verbatim
        !           147: *>          S is DOUBLE PRECISION array, dimension (MM)
        !           148: *>          If JOB = 'E' or 'B', the reciprocal condition numbers of the
        !           149: *>          selected eigenvalues, stored in consecutive elements of the
        !           150: *>          array.
        !           151: *>          If JOB = 'V', S is not referenced.
        !           152: *> \endverbatim
        !           153: *>
        !           154: *> \param[out] DIF
        !           155: *> \verbatim
        !           156: *>          DIF is DOUBLE PRECISION array, dimension (MM)
        !           157: *>          If JOB = 'V' or 'B', the estimated reciprocal condition
        !           158: *>          numbers of the selected eigenvectors, stored in consecutive
        !           159: *>          elements of the array.
        !           160: *>          If the eigenvalues cannot be reordered to compute DIF(j),
        !           161: *>          DIF(j) is set to 0; this can only occur when the true value
        !           162: *>          would be very small anyway.
        !           163: *>          For each eigenvalue/vector specified by SELECT, DIF stores
        !           164: *>          a Frobenius norm-based estimate of Difl.
        !           165: *>          If JOB = 'E', DIF is not referenced.
        !           166: *> \endverbatim
        !           167: *>
        !           168: *> \param[in] MM
        !           169: *> \verbatim
        !           170: *>          MM is INTEGER
        !           171: *>          The number of elements in the arrays S and DIF. MM >= M.
        !           172: *> \endverbatim
        !           173: *>
        !           174: *> \param[out] M
        !           175: *> \verbatim
        !           176: *>          M is INTEGER
        !           177: *>          The number of elements of the arrays S and DIF used to store
        !           178: *>          the specified condition numbers; for each selected eigenvalue
        !           179: *>          one element is used. If HOWMNY = 'A', M is set to N.
        !           180: *> \endverbatim
        !           181: *>
        !           182: *> \param[out] WORK
        !           183: *> \verbatim
        !           184: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           185: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           186: *> \endverbatim
        !           187: *>
        !           188: *> \param[in] LWORK
        !           189: *> \verbatim
        !           190: *>          LWORK is INTEGER
        !           191: *>          The dimension of the array WORK. LWORK >= max(1,N).
        !           192: *>          If JOB = 'V' or 'B', LWORK >= max(1,2*N*N).
        !           193: *> \endverbatim
        !           194: *>
        !           195: *> \param[out] IWORK
        !           196: *> \verbatim
        !           197: *>          IWORK is INTEGER array, dimension (N+2)
        !           198: *>          If JOB = 'E', IWORK is not referenced.
        !           199: *> \endverbatim
        !           200: *>
        !           201: *> \param[out] INFO
        !           202: *> \verbatim
        !           203: *>          INFO is INTEGER
        !           204: *>          = 0: Successful exit
        !           205: *>          < 0: If INFO = -i, the i-th argument had an illegal value
        !           206: *> \endverbatim
        !           207: *
        !           208: *  Authors:
        !           209: *  ========
        !           210: *
        !           211: *> \author Univ. of Tennessee 
        !           212: *> \author Univ. of California Berkeley 
        !           213: *> \author Univ. of Colorado Denver 
        !           214: *> \author NAG Ltd. 
        !           215: *
        !           216: *> \date November 2011
        !           217: *
        !           218: *> \ingroup complex16OTHERcomputational
        !           219: *
        !           220: *> \par Further Details:
        !           221: *  =====================
        !           222: *>
        !           223: *> \verbatim
        !           224: *>
        !           225: *>  The reciprocal of the condition number of the i-th generalized
        !           226: *>  eigenvalue w = (a, b) is defined as
        !           227: *>
        !           228: *>          S(I) = (|v**HAu|**2 + |v**HBu|**2)**(1/2) / (norm(u)*norm(v))
        !           229: *>
        !           230: *>  where u and v are the right and left eigenvectors of (A, B)
        !           231: *>  corresponding to w; |z| denotes the absolute value of the complex
        !           232: *>  number, and norm(u) denotes the 2-norm of the vector u. The pair
        !           233: *>  (a, b) corresponds to an eigenvalue w = a/b (= v**HAu/v**HBu) of the
        !           234: *>  matrix pair (A, B). If both a and b equal zero, then (A,B) is
        !           235: *>  singular and S(I) = -1 is returned.
        !           236: *>
        !           237: *>  An approximate error bound on the chordal distance between the i-th
        !           238: *>  computed generalized eigenvalue w and the corresponding exact
        !           239: *>  eigenvalue lambda is
        !           240: *>
        !           241: *>          chord(w, lambda) <=   EPS * norm(A, B) / S(I),
        !           242: *>
        !           243: *>  where EPS is the machine precision.
        !           244: *>
        !           245: *>  The reciprocal of the condition number of the right eigenvector u
        !           246: *>  and left eigenvector v corresponding to the generalized eigenvalue w
        !           247: *>  is defined as follows. Suppose
        !           248: *>
        !           249: *>                   (A, B) = ( a   *  ) ( b  *  )  1
        !           250: *>                            ( 0  A22 ),( 0 B22 )  n-1
        !           251: *>                              1  n-1     1 n-1
        !           252: *>
        !           253: *>  Then the reciprocal condition number DIF(I) is
        !           254: *>
        !           255: *>          Difl[(a, b), (A22, B22)]  = sigma-min( Zl )
        !           256: *>
        !           257: *>  where sigma-min(Zl) denotes the smallest singular value of
        !           258: *>
        !           259: *>         Zl = [ kron(a, In-1) -kron(1, A22) ]
        !           260: *>              [ kron(b, In-1) -kron(1, B22) ].
        !           261: *>
        !           262: *>  Here In-1 is the identity matrix of size n-1 and X**H is the conjugate
        !           263: *>  transpose of X. kron(X, Y) is the Kronecker product between the
        !           264: *>  matrices X and Y.
        !           265: *>
        !           266: *>  We approximate the smallest singular value of Zl with an upper
        !           267: *>  bound. This is done by ZLATDF.
        !           268: *>
        !           269: *>  An approximate error bound for a computed eigenvector VL(i) or
        !           270: *>  VR(i) is given by
        !           271: *>
        !           272: *>                      EPS * norm(A, B) / DIF(i).
        !           273: *>
        !           274: *>  See ref. [2-3] for more details and further references.
        !           275: *> \endverbatim
        !           276: *
        !           277: *> \par Contributors:
        !           278: *  ==================
        !           279: *>
        !           280: *>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
        !           281: *>     Umea University, S-901 87 Umea, Sweden.
        !           282: *
        !           283: *> \par References:
        !           284: *  ================
        !           285: *>
        !           286: *> \verbatim
        !           287: *>
        !           288: *>  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
        !           289: *>      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
        !           290: *>      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
        !           291: *>      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
        !           292: *>
        !           293: *>  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
        !           294: *>      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
        !           295: *>      Estimation: Theory, Algorithms and Software, Report
        !           296: *>      UMINF - 94.04, Department of Computing Science, Umea University,
        !           297: *>      S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.
        !           298: *>      To appear in Numerical Algorithms, 1996.
        !           299: *>
        !           300: *>  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
        !           301: *>      for Solving the Generalized Sylvester Equation and Estimating the
        !           302: *>      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
        !           303: *>      Department of Computing Science, Umea University, S-901 87 Umea,
        !           304: *>      Sweden, December 1993, Revised April 1994, Also as LAPACK Working
        !           305: *>      Note 75.
        !           306: *>      To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996.
        !           307: *> \endverbatim
        !           308: *>
        !           309: *  =====================================================================
1.1       bertrand  310:       SUBROUTINE ZTGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL,
                    311:      $                   LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK,
                    312:      $                   IWORK, INFO )
                    313: *
1.9     ! bertrand  314: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  315: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    316: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  317: *     November 2011
1.1       bertrand  318: *
                    319: *     .. Scalar Arguments ..
                    320:       CHARACTER          HOWMNY, JOB
                    321:       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N
                    322: *     ..
                    323: *     .. Array Arguments ..
                    324:       LOGICAL            SELECT( * )
                    325:       INTEGER            IWORK( * )
                    326:       DOUBLE PRECISION   DIF( * ), S( * )
                    327:       COMPLEX*16         A( LDA, * ), B( LDB, * ), VL( LDVL, * ),
                    328:      $                   VR( LDVR, * ), WORK( * )
                    329: *     ..
                    330: *
                    331: *  =====================================================================
                    332: *
                    333: *     .. Parameters ..
                    334:       DOUBLE PRECISION   ZERO, ONE
                    335:       INTEGER            IDIFJB
                    336:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, IDIFJB = 3 )
                    337: *     ..
                    338: *     .. Local Scalars ..
                    339:       LOGICAL            LQUERY, SOMCON, WANTBH, WANTDF, WANTS
                    340:       INTEGER            I, IERR, IFST, ILST, K, KS, LWMIN, N1, N2
                    341:       DOUBLE PRECISION   BIGNUM, COND, EPS, LNRM, RNRM, SCALE, SMLNUM
                    342:       COMPLEX*16         YHAX, YHBX
                    343: *     ..
                    344: *     .. Local Arrays ..
                    345:       COMPLEX*16         DUMMY( 1 ), DUMMY1( 1 )
                    346: *     ..
                    347: *     .. External Functions ..
                    348:       LOGICAL            LSAME
                    349:       DOUBLE PRECISION   DLAMCH, DLAPY2, DZNRM2
                    350:       COMPLEX*16         ZDOTC
                    351:       EXTERNAL           LSAME, DLAMCH, DLAPY2, DZNRM2, ZDOTC
                    352: *     ..
                    353: *     .. External Subroutines ..
                    354:       EXTERNAL           DLABAD, XERBLA, ZGEMV, ZLACPY, ZTGEXC, ZTGSYL
                    355: *     ..
                    356: *     .. Intrinsic Functions ..
                    357:       INTRINSIC          ABS, DCMPLX, MAX
                    358: *     ..
                    359: *     .. Executable Statements ..
                    360: *
                    361: *     Decode and test the input parameters
                    362: *
                    363:       WANTBH = LSAME( JOB, 'B' )
                    364:       WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
                    365:       WANTDF = LSAME( JOB, 'V' ) .OR. WANTBH
                    366: *
                    367:       SOMCON = LSAME( HOWMNY, 'S' )
                    368: *
                    369:       INFO = 0
                    370:       LQUERY = ( LWORK.EQ.-1 )
                    371: *
                    372:       IF( .NOT.WANTS .AND. .NOT.WANTDF ) THEN
                    373:          INFO = -1
                    374:       ELSE IF( .NOT.LSAME( HOWMNY, 'A' ) .AND. .NOT.SOMCON ) THEN
                    375:          INFO = -2
                    376:       ELSE IF( N.LT.0 ) THEN
                    377:          INFO = -4
                    378:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    379:          INFO = -6
                    380:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    381:          INFO = -8
                    382:       ELSE IF( WANTS .AND. LDVL.LT.N ) THEN
                    383:          INFO = -10
                    384:       ELSE IF( WANTS .AND. LDVR.LT.N ) THEN
                    385:          INFO = -12
                    386:       ELSE
                    387: *
                    388: *        Set M to the number of eigenpairs for which condition numbers
                    389: *        are required, and test MM.
                    390: *
                    391:          IF( SOMCON ) THEN
                    392:             M = 0
                    393:             DO 10 K = 1, N
                    394:                IF( SELECT( K ) )
                    395:      $            M = M + 1
                    396:    10       CONTINUE
                    397:          ELSE
                    398:             M = N
                    399:          END IF
                    400: *
                    401:          IF( N.EQ.0 ) THEN
                    402:             LWMIN = 1
                    403:          ELSE IF( LSAME( JOB, 'V' ) .OR. LSAME( JOB, 'B' ) ) THEN
                    404:             LWMIN = 2*N*N
                    405:          ELSE
                    406:             LWMIN = N
                    407:          END IF
                    408:          WORK( 1 ) = LWMIN
                    409: *
                    410:          IF( MM.LT.M ) THEN
                    411:             INFO = -15
                    412:          ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    413:             INFO = -18
                    414:          END IF
                    415:       END IF
                    416: *
                    417:       IF( INFO.NE.0 ) THEN
                    418:          CALL XERBLA( 'ZTGSNA', -INFO )
                    419:          RETURN
                    420:       ELSE IF( LQUERY ) THEN
                    421:          RETURN
                    422:       END IF
                    423: *
                    424: *     Quick return if possible
                    425: *
                    426:       IF( N.EQ.0 )
                    427:      $   RETURN
                    428: *
                    429: *     Get machine constants
                    430: *
                    431:       EPS = DLAMCH( 'P' )
                    432:       SMLNUM = DLAMCH( 'S' ) / EPS
                    433:       BIGNUM = ONE / SMLNUM
                    434:       CALL DLABAD( SMLNUM, BIGNUM )
                    435:       KS = 0
                    436:       DO 20 K = 1, N
                    437: *
                    438: *        Determine whether condition numbers are required for the k-th
                    439: *        eigenpair.
                    440: *
                    441:          IF( SOMCON ) THEN
                    442:             IF( .NOT.SELECT( K ) )
                    443:      $         GO TO 20
                    444:          END IF
                    445: *
                    446:          KS = KS + 1
                    447: *
                    448:          IF( WANTS ) THEN
                    449: *
                    450: *           Compute the reciprocal condition number of the k-th
                    451: *           eigenvalue.
                    452: *
                    453:             RNRM = DZNRM2( N, VR( 1, KS ), 1 )
                    454:             LNRM = DZNRM2( N, VL( 1, KS ), 1 )
                    455:             CALL ZGEMV( 'N', N, N, DCMPLX( ONE, ZERO ), A, LDA,
                    456:      $                  VR( 1, KS ), 1, DCMPLX( ZERO, ZERO ), WORK, 1 )
                    457:             YHAX = ZDOTC( N, WORK, 1, VL( 1, KS ), 1 )
                    458:             CALL ZGEMV( 'N', N, N, DCMPLX( ONE, ZERO ), B, LDB,
                    459:      $                  VR( 1, KS ), 1, DCMPLX( ZERO, ZERO ), WORK, 1 )
                    460:             YHBX = ZDOTC( N, WORK, 1, VL( 1, KS ), 1 )
                    461:             COND = DLAPY2( ABS( YHAX ), ABS( YHBX ) )
                    462:             IF( COND.EQ.ZERO ) THEN
                    463:                S( KS ) = -ONE
                    464:             ELSE
                    465:                S( KS ) = COND / ( RNRM*LNRM )
                    466:             END IF
                    467:          END IF
                    468: *
                    469:          IF( WANTDF ) THEN
                    470:             IF( N.EQ.1 ) THEN
                    471:                DIF( KS ) = DLAPY2( ABS( A( 1, 1 ) ), ABS( B( 1, 1 ) ) )
                    472:             ELSE
                    473: *
                    474: *              Estimate the reciprocal condition number of the k-th
                    475: *              eigenvectors.
                    476: *
                    477: *              Copy the matrix (A, B) to the array WORK and move the
                    478: *              (k,k)th pair to the (1,1) position.
                    479: *
                    480:                CALL ZLACPY( 'Full', N, N, A, LDA, WORK, N )
                    481:                CALL ZLACPY( 'Full', N, N, B, LDB, WORK( N*N+1 ), N )
                    482:                IFST = K
                    483:                ILST = 1
                    484: *
                    485:                CALL ZTGEXC( .FALSE., .FALSE., N, WORK, N, WORK( N*N+1 ),
                    486:      $                      N, DUMMY, 1, DUMMY1, 1, IFST, ILST, IERR )
                    487: *
                    488:                IF( IERR.GT.0 ) THEN
                    489: *
                    490: *                 Ill-conditioned problem - swap rejected.
                    491: *
                    492:                   DIF( KS ) = ZERO
                    493:                ELSE
                    494: *
                    495: *                 Reordering successful, solve generalized Sylvester
                    496: *                 equation for R and L,
                    497: *                            A22 * R - L * A11 = A12
                    498: *                            B22 * R - L * B11 = B12,
                    499: *                 and compute estimate of Difl[(A11,B11), (A22, B22)].
                    500: *
                    501:                   N1 = 1
                    502:                   N2 = N - N1
                    503:                   I = N*N + 1
                    504:                   CALL ZTGSYL( 'N', IDIFJB, N2, N1, WORK( N*N1+N1+1 ),
                    505:      $                         N, WORK, N, WORK( N1+1 ), N,
                    506:      $                         WORK( N*N1+N1+I ), N, WORK( I ), N,
                    507:      $                         WORK( N1+I ), N, SCALE, DIF( KS ), DUMMY,
                    508:      $                         1, IWORK, IERR )
                    509:                END IF
                    510:             END IF
                    511:          END IF
                    512: *
                    513:    20 CONTINUE
                    514:       WORK( 1 ) = LWMIN
                    515:       RETURN
                    516: *
                    517: *     End of ZTGSNA
                    518: *
                    519:       END

CVSweb interface <joel.bertrand@systella.fr>