Annotation of rpl/lapack/lapack/ztgsna.f, revision 1.4

1.1       bertrand    1:       SUBROUTINE ZTGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL,
                      2:      $                   LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK,
                      3:      $                   IWORK, INFO )
                      4: *
                      5: *  -- LAPACK routine (version 3.2) --
                      6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      8: *     November 2006
                      9: *
                     10: *     .. Scalar Arguments ..
                     11:       CHARACTER          HOWMNY, JOB
                     12:       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N
                     13: *     ..
                     14: *     .. Array Arguments ..
                     15:       LOGICAL            SELECT( * )
                     16:       INTEGER            IWORK( * )
                     17:       DOUBLE PRECISION   DIF( * ), S( * )
                     18:       COMPLEX*16         A( LDA, * ), B( LDB, * ), VL( LDVL, * ),
                     19:      $                   VR( LDVR, * ), WORK( * )
                     20: *     ..
                     21: *
                     22: *  Purpose
                     23: *  =======
                     24: *
                     25: *  ZTGSNA estimates reciprocal condition numbers for specified
                     26: *  eigenvalues and/or eigenvectors of a matrix pair (A, B).
                     27: *
                     28: *  (A, B) must be in generalized Schur canonical form, that is, A and
                     29: *  B are both upper triangular.
                     30: *
                     31: *  Arguments
                     32: *  =========
                     33: *
                     34: *  JOB     (input) CHARACTER*1
                     35: *          Specifies whether condition numbers are required for
                     36: *          eigenvalues (S) or eigenvectors (DIF):
                     37: *          = 'E': for eigenvalues only (S);
                     38: *          = 'V': for eigenvectors only (DIF);
                     39: *          = 'B': for both eigenvalues and eigenvectors (S and DIF).
                     40: *
                     41: *  HOWMNY  (input) CHARACTER*1
                     42: *          = 'A': compute condition numbers for all eigenpairs;
                     43: *          = 'S': compute condition numbers for selected eigenpairs
                     44: *                 specified by the array SELECT.
                     45: *
                     46: *  SELECT  (input) LOGICAL array, dimension (N)
                     47: *          If HOWMNY = 'S', SELECT specifies the eigenpairs for which
                     48: *          condition numbers are required. To select condition numbers
                     49: *          for the corresponding j-th eigenvalue and/or eigenvector,
                     50: *          SELECT(j) must be set to .TRUE..
                     51: *          If HOWMNY = 'A', SELECT is not referenced.
                     52: *
                     53: *  N       (input) INTEGER
                     54: *          The order of the square matrix pair (A, B). N >= 0.
                     55: *
                     56: *  A       (input) COMPLEX*16 array, dimension (LDA,N)
                     57: *          The upper triangular matrix A in the pair (A,B).
                     58: *
                     59: *  LDA     (input) INTEGER
                     60: *          The leading dimension of the array A. LDA >= max(1,N).
                     61: *
                     62: *  B       (input) COMPLEX*16 array, dimension (LDB,N)
                     63: *          The upper triangular matrix B in the pair (A, B).
                     64: *
                     65: *  LDB     (input) INTEGER
                     66: *          The leading dimension of the array B. LDB >= max(1,N).
                     67: *
                     68: *  VL      (input) COMPLEX*16 array, dimension (LDVL,M)
                     69: *          IF JOB = 'E' or 'B', VL must contain left eigenvectors of
                     70: *          (A, B), corresponding to the eigenpairs specified by HOWMNY
                     71: *          and SELECT.  The eigenvectors must be stored in consecutive
                     72: *          columns of VL, as returned by ZTGEVC.
                     73: *          If JOB = 'V', VL is not referenced.
                     74: *
                     75: *  LDVL    (input) INTEGER
                     76: *          The leading dimension of the array VL. LDVL >= 1; and
                     77: *          If JOB = 'E' or 'B', LDVL >= N.
                     78: *
                     79: *  VR      (input) COMPLEX*16 array, dimension (LDVR,M)
                     80: *          IF JOB = 'E' or 'B', VR must contain right eigenvectors of
                     81: *          (A, B), corresponding to the eigenpairs specified by HOWMNY
                     82: *          and SELECT.  The eigenvectors must be stored in consecutive
                     83: *          columns of VR, as returned by ZTGEVC.
                     84: *          If JOB = 'V', VR is not referenced.
                     85: *
                     86: *  LDVR    (input) INTEGER
                     87: *          The leading dimension of the array VR. LDVR >= 1;
                     88: *          If JOB = 'E' or 'B', LDVR >= N.
                     89: *
                     90: *  S       (output) DOUBLE PRECISION array, dimension (MM)
                     91: *          If JOB = 'E' or 'B', the reciprocal condition numbers of the
                     92: *          selected eigenvalues, stored in consecutive elements of the
                     93: *          array.
                     94: *          If JOB = 'V', S is not referenced.
                     95: *
                     96: *  DIF     (output) DOUBLE PRECISION array, dimension (MM)
                     97: *          If JOB = 'V' or 'B', the estimated reciprocal condition
                     98: *          numbers of the selected eigenvectors, stored in consecutive
                     99: *          elements of the array.
                    100: *          If the eigenvalues cannot be reordered to compute DIF(j),
                    101: *          DIF(j) is set to 0; this can only occur when the true value
                    102: *          would be very small anyway.
                    103: *          For each eigenvalue/vector specified by SELECT, DIF stores
                    104: *          a Frobenius norm-based estimate of Difl.
                    105: *          If JOB = 'E', DIF is not referenced.
                    106: *
                    107: *  MM      (input) INTEGER
                    108: *          The number of elements in the arrays S and DIF. MM >= M.
                    109: *
                    110: *  M       (output) INTEGER
                    111: *          The number of elements of the arrays S and DIF used to store
                    112: *          the specified condition numbers; for each selected eigenvalue
                    113: *          one element is used. If HOWMNY = 'A', M is set to N.
                    114: *
                    115: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
                    116: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    117: *
                    118: *  LWORK  (input) INTEGER
                    119: *          The dimension of the array WORK. LWORK >= max(1,N).
                    120: *          If JOB = 'V' or 'B', LWORK >= max(1,2*N*N).
                    121: *
                    122: *  IWORK   (workspace) INTEGER array, dimension (N+2)
                    123: *          If JOB = 'E', IWORK is not referenced.
                    124: *
                    125: *  INFO    (output) INTEGER
                    126: *          = 0: Successful exit
                    127: *          < 0: If INFO = -i, the i-th argument had an illegal value
                    128: *
                    129: *  Further Details
                    130: *  ===============
                    131: *
                    132: *  The reciprocal of the condition number of the i-th generalized
                    133: *  eigenvalue w = (a, b) is defined as
                    134: *
                    135: *          S(I) = (|v'Au|**2 + |v'Bu|**2)**(1/2) / (norm(u)*norm(v))
                    136: *
                    137: *  where u and v are the right and left eigenvectors of (A, B)
                    138: *  corresponding to w; |z| denotes the absolute value of the complex
                    139: *  number, and norm(u) denotes the 2-norm of the vector u. The pair
                    140: *  (a, b) corresponds to an eigenvalue w = a/b (= v'Au/v'Bu) of the
                    141: *  matrix pair (A, B). If both a and b equal zero, then (A,B) is
                    142: *  singular and S(I) = -1 is returned.
                    143: *
                    144: *  An approximate error bound on the chordal distance between the i-th
                    145: *  computed generalized eigenvalue w and the corresponding exact
                    146: *  eigenvalue lambda is
                    147: *
                    148: *          chord(w, lambda) <=   EPS * norm(A, B) / S(I),
                    149: *
                    150: *  where EPS is the machine precision.
                    151: *
                    152: *  The reciprocal of the condition number of the right eigenvector u
                    153: *  and left eigenvector v corresponding to the generalized eigenvalue w
                    154: *  is defined as follows. Suppose
                    155: *
                    156: *                   (A, B) = ( a   *  ) ( b  *  )  1
                    157: *                            ( 0  A22 ),( 0 B22 )  n-1
                    158: *                              1  n-1     1 n-1
                    159: *
                    160: *  Then the reciprocal condition number DIF(I) is
                    161: *
                    162: *          Difl[(a, b), (A22, B22)]  = sigma-min( Zl )
                    163: *
                    164: *  where sigma-min(Zl) denotes the smallest singular value of
                    165: *
                    166: *         Zl = [ kron(a, In-1) -kron(1, A22) ]
                    167: *              [ kron(b, In-1) -kron(1, B22) ].
                    168: *
                    169: *  Here In-1 is the identity matrix of size n-1 and X' is the conjugate
                    170: *  transpose of X. kron(X, Y) is the Kronecker product between the
                    171: *  matrices X and Y.
                    172: *
                    173: *  We approximate the smallest singular value of Zl with an upper
                    174: *  bound. This is done by ZLATDF.
                    175: *
                    176: *  An approximate error bound for a computed eigenvector VL(i) or
                    177: *  VR(i) is given by
                    178: *
                    179: *                      EPS * norm(A, B) / DIF(i).
                    180: *
                    181: *  See ref. [2-3] for more details and further references.
                    182: *
                    183: *  Based on contributions by
                    184: *     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
                    185: *     Umea University, S-901 87 Umea, Sweden.
                    186: *
                    187: *  References
                    188: *  ==========
                    189: *
                    190: *  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
                    191: *      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
                    192: *      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
                    193: *      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
                    194: *
                    195: *  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
                    196: *      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
                    197: *      Estimation: Theory, Algorithms and Software, Report
                    198: *      UMINF - 94.04, Department of Computing Science, Umea University,
                    199: *      S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.
                    200: *      To appear in Numerical Algorithms, 1996.
                    201: *
                    202: *  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
                    203: *      for Solving the Generalized Sylvester Equation and Estimating the
                    204: *      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
                    205: *      Department of Computing Science, Umea University, S-901 87 Umea,
                    206: *      Sweden, December 1993, Revised April 1994, Also as LAPACK Working
                    207: *      Note 75.
                    208: *      To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996.
                    209: *
                    210: *  =====================================================================
                    211: *
                    212: *     .. Parameters ..
                    213:       DOUBLE PRECISION   ZERO, ONE
                    214:       INTEGER            IDIFJB
                    215:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, IDIFJB = 3 )
                    216: *     ..
                    217: *     .. Local Scalars ..
                    218:       LOGICAL            LQUERY, SOMCON, WANTBH, WANTDF, WANTS
                    219:       INTEGER            I, IERR, IFST, ILST, K, KS, LWMIN, N1, N2
                    220:       DOUBLE PRECISION   BIGNUM, COND, EPS, LNRM, RNRM, SCALE, SMLNUM
                    221:       COMPLEX*16         YHAX, YHBX
                    222: *     ..
                    223: *     .. Local Arrays ..
                    224:       COMPLEX*16         DUMMY( 1 ), DUMMY1( 1 )
                    225: *     ..
                    226: *     .. External Functions ..
                    227:       LOGICAL            LSAME
                    228:       DOUBLE PRECISION   DLAMCH, DLAPY2, DZNRM2
                    229:       COMPLEX*16         ZDOTC
                    230:       EXTERNAL           LSAME, DLAMCH, DLAPY2, DZNRM2, ZDOTC
                    231: *     ..
                    232: *     .. External Subroutines ..
                    233:       EXTERNAL           DLABAD, XERBLA, ZGEMV, ZLACPY, ZTGEXC, ZTGSYL
                    234: *     ..
                    235: *     .. Intrinsic Functions ..
                    236:       INTRINSIC          ABS, DCMPLX, MAX
                    237: *     ..
                    238: *     .. Executable Statements ..
                    239: *
                    240: *     Decode and test the input parameters
                    241: *
                    242:       WANTBH = LSAME( JOB, 'B' )
                    243:       WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
                    244:       WANTDF = LSAME( JOB, 'V' ) .OR. WANTBH
                    245: *
                    246:       SOMCON = LSAME( HOWMNY, 'S' )
                    247: *
                    248:       INFO = 0
                    249:       LQUERY = ( LWORK.EQ.-1 )
                    250: *
                    251:       IF( .NOT.WANTS .AND. .NOT.WANTDF ) THEN
                    252:          INFO = -1
                    253:       ELSE IF( .NOT.LSAME( HOWMNY, 'A' ) .AND. .NOT.SOMCON ) THEN
                    254:          INFO = -2
                    255:       ELSE IF( N.LT.0 ) THEN
                    256:          INFO = -4
                    257:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    258:          INFO = -6
                    259:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    260:          INFO = -8
                    261:       ELSE IF( WANTS .AND. LDVL.LT.N ) THEN
                    262:          INFO = -10
                    263:       ELSE IF( WANTS .AND. LDVR.LT.N ) THEN
                    264:          INFO = -12
                    265:       ELSE
                    266: *
                    267: *        Set M to the number of eigenpairs for which condition numbers
                    268: *        are required, and test MM.
                    269: *
                    270:          IF( SOMCON ) THEN
                    271:             M = 0
                    272:             DO 10 K = 1, N
                    273:                IF( SELECT( K ) )
                    274:      $            M = M + 1
                    275:    10       CONTINUE
                    276:          ELSE
                    277:             M = N
                    278:          END IF
                    279: *
                    280:          IF( N.EQ.0 ) THEN
                    281:             LWMIN = 1
                    282:          ELSE IF( LSAME( JOB, 'V' ) .OR. LSAME( JOB, 'B' ) ) THEN
                    283:             LWMIN = 2*N*N
                    284:          ELSE
                    285:             LWMIN = N
                    286:          END IF
                    287:          WORK( 1 ) = LWMIN
                    288: *
                    289:          IF( MM.LT.M ) THEN
                    290:             INFO = -15
                    291:          ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    292:             INFO = -18
                    293:          END IF
                    294:       END IF
                    295: *
                    296:       IF( INFO.NE.0 ) THEN
                    297:          CALL XERBLA( 'ZTGSNA', -INFO )
                    298:          RETURN
                    299:       ELSE IF( LQUERY ) THEN
                    300:          RETURN
                    301:       END IF
                    302: *
                    303: *     Quick return if possible
                    304: *
                    305:       IF( N.EQ.0 )
                    306:      $   RETURN
                    307: *
                    308: *     Get machine constants
                    309: *
                    310:       EPS = DLAMCH( 'P' )
                    311:       SMLNUM = DLAMCH( 'S' ) / EPS
                    312:       BIGNUM = ONE / SMLNUM
                    313:       CALL DLABAD( SMLNUM, BIGNUM )
                    314:       KS = 0
                    315:       DO 20 K = 1, N
                    316: *
                    317: *        Determine whether condition numbers are required for the k-th
                    318: *        eigenpair.
                    319: *
                    320:          IF( SOMCON ) THEN
                    321:             IF( .NOT.SELECT( K ) )
                    322:      $         GO TO 20
                    323:          END IF
                    324: *
                    325:          KS = KS + 1
                    326: *
                    327:          IF( WANTS ) THEN
                    328: *
                    329: *           Compute the reciprocal condition number of the k-th
                    330: *           eigenvalue.
                    331: *
                    332:             RNRM = DZNRM2( N, VR( 1, KS ), 1 )
                    333:             LNRM = DZNRM2( N, VL( 1, KS ), 1 )
                    334:             CALL ZGEMV( 'N', N, N, DCMPLX( ONE, ZERO ), A, LDA,
                    335:      $                  VR( 1, KS ), 1, DCMPLX( ZERO, ZERO ), WORK, 1 )
                    336:             YHAX = ZDOTC( N, WORK, 1, VL( 1, KS ), 1 )
                    337:             CALL ZGEMV( 'N', N, N, DCMPLX( ONE, ZERO ), B, LDB,
                    338:      $                  VR( 1, KS ), 1, DCMPLX( ZERO, ZERO ), WORK, 1 )
                    339:             YHBX = ZDOTC( N, WORK, 1, VL( 1, KS ), 1 )
                    340:             COND = DLAPY2( ABS( YHAX ), ABS( YHBX ) )
                    341:             IF( COND.EQ.ZERO ) THEN
                    342:                S( KS ) = -ONE
                    343:             ELSE
                    344:                S( KS ) = COND / ( RNRM*LNRM )
                    345:             END IF
                    346:          END IF
                    347: *
                    348:          IF( WANTDF ) THEN
                    349:             IF( N.EQ.1 ) THEN
                    350:                DIF( KS ) = DLAPY2( ABS( A( 1, 1 ) ), ABS( B( 1, 1 ) ) )
                    351:             ELSE
                    352: *
                    353: *              Estimate the reciprocal condition number of the k-th
                    354: *              eigenvectors.
                    355: *
                    356: *              Copy the matrix (A, B) to the array WORK and move the
                    357: *              (k,k)th pair to the (1,1) position.
                    358: *
                    359:                CALL ZLACPY( 'Full', N, N, A, LDA, WORK, N )
                    360:                CALL ZLACPY( 'Full', N, N, B, LDB, WORK( N*N+1 ), N )
                    361:                IFST = K
                    362:                ILST = 1
                    363: *
                    364:                CALL ZTGEXC( .FALSE., .FALSE., N, WORK, N, WORK( N*N+1 ),
                    365:      $                      N, DUMMY, 1, DUMMY1, 1, IFST, ILST, IERR )
                    366: *
                    367:                IF( IERR.GT.0 ) THEN
                    368: *
                    369: *                 Ill-conditioned problem - swap rejected.
                    370: *
                    371:                   DIF( KS ) = ZERO
                    372:                ELSE
                    373: *
                    374: *                 Reordering successful, solve generalized Sylvester
                    375: *                 equation for R and L,
                    376: *                            A22 * R - L * A11 = A12
                    377: *                            B22 * R - L * B11 = B12,
                    378: *                 and compute estimate of Difl[(A11,B11), (A22, B22)].
                    379: *
                    380:                   N1 = 1
                    381:                   N2 = N - N1
                    382:                   I = N*N + 1
                    383:                   CALL ZTGSYL( 'N', IDIFJB, N2, N1, WORK( N*N1+N1+1 ),
                    384:      $                         N, WORK, N, WORK( N1+1 ), N,
                    385:      $                         WORK( N*N1+N1+I ), N, WORK( I ), N,
                    386:      $                         WORK( N1+I ), N, SCALE, DIF( KS ), DUMMY,
                    387:      $                         1, IWORK, IERR )
                    388:                END IF
                    389:             END IF
                    390:          END IF
                    391: *
                    392:    20 CONTINUE
                    393:       WORK( 1 ) = LWMIN
                    394:       RETURN
                    395: *
                    396: *     End of ZTGSNA
                    397: *
                    398:       END

CVSweb interface <joel.bertrand@systella.fr>