Annotation of rpl/lapack/lapack/ztgsna.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZTGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL,
        !             2:      $                   LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK,
        !             3:      $                   IWORK, INFO )
        !             4: *
        !             5: *  -- LAPACK routine (version 3.2) --
        !             6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             8: *     November 2006
        !             9: *
        !            10: *     .. Scalar Arguments ..
        !            11:       CHARACTER          HOWMNY, JOB
        !            12:       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N
        !            13: *     ..
        !            14: *     .. Array Arguments ..
        !            15:       LOGICAL            SELECT( * )
        !            16:       INTEGER            IWORK( * )
        !            17:       DOUBLE PRECISION   DIF( * ), S( * )
        !            18:       COMPLEX*16         A( LDA, * ), B( LDB, * ), VL( LDVL, * ),
        !            19:      $                   VR( LDVR, * ), WORK( * )
        !            20: *     ..
        !            21: *
        !            22: *  Purpose
        !            23: *  =======
        !            24: *
        !            25: *  ZTGSNA estimates reciprocal condition numbers for specified
        !            26: *  eigenvalues and/or eigenvectors of a matrix pair (A, B).
        !            27: *
        !            28: *  (A, B) must be in generalized Schur canonical form, that is, A and
        !            29: *  B are both upper triangular.
        !            30: *
        !            31: *  Arguments
        !            32: *  =========
        !            33: *
        !            34: *  JOB     (input) CHARACTER*1
        !            35: *          Specifies whether condition numbers are required for
        !            36: *          eigenvalues (S) or eigenvectors (DIF):
        !            37: *          = 'E': for eigenvalues only (S);
        !            38: *          = 'V': for eigenvectors only (DIF);
        !            39: *          = 'B': for both eigenvalues and eigenvectors (S and DIF).
        !            40: *
        !            41: *  HOWMNY  (input) CHARACTER*1
        !            42: *          = 'A': compute condition numbers for all eigenpairs;
        !            43: *          = 'S': compute condition numbers for selected eigenpairs
        !            44: *                 specified by the array SELECT.
        !            45: *
        !            46: *  SELECT  (input) LOGICAL array, dimension (N)
        !            47: *          If HOWMNY = 'S', SELECT specifies the eigenpairs for which
        !            48: *          condition numbers are required. To select condition numbers
        !            49: *          for the corresponding j-th eigenvalue and/or eigenvector,
        !            50: *          SELECT(j) must be set to .TRUE..
        !            51: *          If HOWMNY = 'A', SELECT is not referenced.
        !            52: *
        !            53: *  N       (input) INTEGER
        !            54: *          The order of the square matrix pair (A, B). N >= 0.
        !            55: *
        !            56: *  A       (input) COMPLEX*16 array, dimension (LDA,N)
        !            57: *          The upper triangular matrix A in the pair (A,B).
        !            58: *
        !            59: *  LDA     (input) INTEGER
        !            60: *          The leading dimension of the array A. LDA >= max(1,N).
        !            61: *
        !            62: *  B       (input) COMPLEX*16 array, dimension (LDB,N)
        !            63: *          The upper triangular matrix B in the pair (A, B).
        !            64: *
        !            65: *  LDB     (input) INTEGER
        !            66: *          The leading dimension of the array B. LDB >= max(1,N).
        !            67: *
        !            68: *  VL      (input) COMPLEX*16 array, dimension (LDVL,M)
        !            69: *          IF JOB = 'E' or 'B', VL must contain left eigenvectors of
        !            70: *          (A, B), corresponding to the eigenpairs specified by HOWMNY
        !            71: *          and SELECT.  The eigenvectors must be stored in consecutive
        !            72: *          columns of VL, as returned by ZTGEVC.
        !            73: *          If JOB = 'V', VL is not referenced.
        !            74: *
        !            75: *  LDVL    (input) INTEGER
        !            76: *          The leading dimension of the array VL. LDVL >= 1; and
        !            77: *          If JOB = 'E' or 'B', LDVL >= N.
        !            78: *
        !            79: *  VR      (input) COMPLEX*16 array, dimension (LDVR,M)
        !            80: *          IF JOB = 'E' or 'B', VR must contain right eigenvectors of
        !            81: *          (A, B), corresponding to the eigenpairs specified by HOWMNY
        !            82: *          and SELECT.  The eigenvectors must be stored in consecutive
        !            83: *          columns of VR, as returned by ZTGEVC.
        !            84: *          If JOB = 'V', VR is not referenced.
        !            85: *
        !            86: *  LDVR    (input) INTEGER
        !            87: *          The leading dimension of the array VR. LDVR >= 1;
        !            88: *          If JOB = 'E' or 'B', LDVR >= N.
        !            89: *
        !            90: *  S       (output) DOUBLE PRECISION array, dimension (MM)
        !            91: *          If JOB = 'E' or 'B', the reciprocal condition numbers of the
        !            92: *          selected eigenvalues, stored in consecutive elements of the
        !            93: *          array.
        !            94: *          If JOB = 'V', S is not referenced.
        !            95: *
        !            96: *  DIF     (output) DOUBLE PRECISION array, dimension (MM)
        !            97: *          If JOB = 'V' or 'B', the estimated reciprocal condition
        !            98: *          numbers of the selected eigenvectors, stored in consecutive
        !            99: *          elements of the array.
        !           100: *          If the eigenvalues cannot be reordered to compute DIF(j),
        !           101: *          DIF(j) is set to 0; this can only occur when the true value
        !           102: *          would be very small anyway.
        !           103: *          For each eigenvalue/vector specified by SELECT, DIF stores
        !           104: *          a Frobenius norm-based estimate of Difl.
        !           105: *          If JOB = 'E', DIF is not referenced.
        !           106: *
        !           107: *  MM      (input) INTEGER
        !           108: *          The number of elements in the arrays S and DIF. MM >= M.
        !           109: *
        !           110: *  M       (output) INTEGER
        !           111: *          The number of elements of the arrays S and DIF used to store
        !           112: *          the specified condition numbers; for each selected eigenvalue
        !           113: *          one element is used. If HOWMNY = 'A', M is set to N.
        !           114: *
        !           115: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           116: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           117: *
        !           118: *  LWORK  (input) INTEGER
        !           119: *          The dimension of the array WORK. LWORK >= max(1,N).
        !           120: *          If JOB = 'V' or 'B', LWORK >= max(1,2*N*N).
        !           121: *
        !           122: *  IWORK   (workspace) INTEGER array, dimension (N+2)
        !           123: *          If JOB = 'E', IWORK is not referenced.
        !           124: *
        !           125: *  INFO    (output) INTEGER
        !           126: *          = 0: Successful exit
        !           127: *          < 0: If INFO = -i, the i-th argument had an illegal value
        !           128: *
        !           129: *  Further Details
        !           130: *  ===============
        !           131: *
        !           132: *  The reciprocal of the condition number of the i-th generalized
        !           133: *  eigenvalue w = (a, b) is defined as
        !           134: *
        !           135: *          S(I) = (|v'Au|**2 + |v'Bu|**2)**(1/2) / (norm(u)*norm(v))
        !           136: *
        !           137: *  where u and v are the right and left eigenvectors of (A, B)
        !           138: *  corresponding to w; |z| denotes the absolute value of the complex
        !           139: *  number, and norm(u) denotes the 2-norm of the vector u. The pair
        !           140: *  (a, b) corresponds to an eigenvalue w = a/b (= v'Au/v'Bu) of the
        !           141: *  matrix pair (A, B). If both a and b equal zero, then (A,B) is
        !           142: *  singular and S(I) = -1 is returned.
        !           143: *
        !           144: *  An approximate error bound on the chordal distance between the i-th
        !           145: *  computed generalized eigenvalue w and the corresponding exact
        !           146: *  eigenvalue lambda is
        !           147: *
        !           148: *          chord(w, lambda) <=   EPS * norm(A, B) / S(I),
        !           149: *
        !           150: *  where EPS is the machine precision.
        !           151: *
        !           152: *  The reciprocal of the condition number of the right eigenvector u
        !           153: *  and left eigenvector v corresponding to the generalized eigenvalue w
        !           154: *  is defined as follows. Suppose
        !           155: *
        !           156: *                   (A, B) = ( a   *  ) ( b  *  )  1
        !           157: *                            ( 0  A22 ),( 0 B22 )  n-1
        !           158: *                              1  n-1     1 n-1
        !           159: *
        !           160: *  Then the reciprocal condition number DIF(I) is
        !           161: *
        !           162: *          Difl[(a, b), (A22, B22)]  = sigma-min( Zl )
        !           163: *
        !           164: *  where sigma-min(Zl) denotes the smallest singular value of
        !           165: *
        !           166: *         Zl = [ kron(a, In-1) -kron(1, A22) ]
        !           167: *              [ kron(b, In-1) -kron(1, B22) ].
        !           168: *
        !           169: *  Here In-1 is the identity matrix of size n-1 and X' is the conjugate
        !           170: *  transpose of X. kron(X, Y) is the Kronecker product between the
        !           171: *  matrices X and Y.
        !           172: *
        !           173: *  We approximate the smallest singular value of Zl with an upper
        !           174: *  bound. This is done by ZLATDF.
        !           175: *
        !           176: *  An approximate error bound for a computed eigenvector VL(i) or
        !           177: *  VR(i) is given by
        !           178: *
        !           179: *                      EPS * norm(A, B) / DIF(i).
        !           180: *
        !           181: *  See ref. [2-3] for more details and further references.
        !           182: *
        !           183: *  Based on contributions by
        !           184: *     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
        !           185: *     Umea University, S-901 87 Umea, Sweden.
        !           186: *
        !           187: *  References
        !           188: *  ==========
        !           189: *
        !           190: *  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
        !           191: *      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
        !           192: *      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
        !           193: *      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
        !           194: *
        !           195: *  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
        !           196: *      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
        !           197: *      Estimation: Theory, Algorithms and Software, Report
        !           198: *      UMINF - 94.04, Department of Computing Science, Umea University,
        !           199: *      S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.
        !           200: *      To appear in Numerical Algorithms, 1996.
        !           201: *
        !           202: *  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
        !           203: *      for Solving the Generalized Sylvester Equation and Estimating the
        !           204: *      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
        !           205: *      Department of Computing Science, Umea University, S-901 87 Umea,
        !           206: *      Sweden, December 1993, Revised April 1994, Also as LAPACK Working
        !           207: *      Note 75.
        !           208: *      To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996.
        !           209: *
        !           210: *  =====================================================================
        !           211: *
        !           212: *     .. Parameters ..
        !           213:       DOUBLE PRECISION   ZERO, ONE
        !           214:       INTEGER            IDIFJB
        !           215:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, IDIFJB = 3 )
        !           216: *     ..
        !           217: *     .. Local Scalars ..
        !           218:       LOGICAL            LQUERY, SOMCON, WANTBH, WANTDF, WANTS
        !           219:       INTEGER            I, IERR, IFST, ILST, K, KS, LWMIN, N1, N2
        !           220:       DOUBLE PRECISION   BIGNUM, COND, EPS, LNRM, RNRM, SCALE, SMLNUM
        !           221:       COMPLEX*16         YHAX, YHBX
        !           222: *     ..
        !           223: *     .. Local Arrays ..
        !           224:       COMPLEX*16         DUMMY( 1 ), DUMMY1( 1 )
        !           225: *     ..
        !           226: *     .. External Functions ..
        !           227:       LOGICAL            LSAME
        !           228:       DOUBLE PRECISION   DLAMCH, DLAPY2, DZNRM2
        !           229:       COMPLEX*16         ZDOTC
        !           230:       EXTERNAL           LSAME, DLAMCH, DLAPY2, DZNRM2, ZDOTC
        !           231: *     ..
        !           232: *     .. External Subroutines ..
        !           233:       EXTERNAL           DLABAD, XERBLA, ZGEMV, ZLACPY, ZTGEXC, ZTGSYL
        !           234: *     ..
        !           235: *     .. Intrinsic Functions ..
        !           236:       INTRINSIC          ABS, DCMPLX, MAX
        !           237: *     ..
        !           238: *     .. Executable Statements ..
        !           239: *
        !           240: *     Decode and test the input parameters
        !           241: *
        !           242:       WANTBH = LSAME( JOB, 'B' )
        !           243:       WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
        !           244:       WANTDF = LSAME( JOB, 'V' ) .OR. WANTBH
        !           245: *
        !           246:       SOMCON = LSAME( HOWMNY, 'S' )
        !           247: *
        !           248:       INFO = 0
        !           249:       LQUERY = ( LWORK.EQ.-1 )
        !           250: *
        !           251:       IF( .NOT.WANTS .AND. .NOT.WANTDF ) THEN
        !           252:          INFO = -1
        !           253:       ELSE IF( .NOT.LSAME( HOWMNY, 'A' ) .AND. .NOT.SOMCON ) THEN
        !           254:          INFO = -2
        !           255:       ELSE IF( N.LT.0 ) THEN
        !           256:          INFO = -4
        !           257:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           258:          INFO = -6
        !           259:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        !           260:          INFO = -8
        !           261:       ELSE IF( WANTS .AND. LDVL.LT.N ) THEN
        !           262:          INFO = -10
        !           263:       ELSE IF( WANTS .AND. LDVR.LT.N ) THEN
        !           264:          INFO = -12
        !           265:       ELSE
        !           266: *
        !           267: *        Set M to the number of eigenpairs for which condition numbers
        !           268: *        are required, and test MM.
        !           269: *
        !           270:          IF( SOMCON ) THEN
        !           271:             M = 0
        !           272:             DO 10 K = 1, N
        !           273:                IF( SELECT( K ) )
        !           274:      $            M = M + 1
        !           275:    10       CONTINUE
        !           276:          ELSE
        !           277:             M = N
        !           278:          END IF
        !           279: *
        !           280:          IF( N.EQ.0 ) THEN
        !           281:             LWMIN = 1
        !           282:          ELSE IF( LSAME( JOB, 'V' ) .OR. LSAME( JOB, 'B' ) ) THEN
        !           283:             LWMIN = 2*N*N
        !           284:          ELSE
        !           285:             LWMIN = N
        !           286:          END IF
        !           287:          WORK( 1 ) = LWMIN
        !           288: *
        !           289:          IF( MM.LT.M ) THEN
        !           290:             INFO = -15
        !           291:          ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
        !           292:             INFO = -18
        !           293:          END IF
        !           294:       END IF
        !           295: *
        !           296:       IF( INFO.NE.0 ) THEN
        !           297:          CALL XERBLA( 'ZTGSNA', -INFO )
        !           298:          RETURN
        !           299:       ELSE IF( LQUERY ) THEN
        !           300:          RETURN
        !           301:       END IF
        !           302: *
        !           303: *     Quick return if possible
        !           304: *
        !           305:       IF( N.EQ.0 )
        !           306:      $   RETURN
        !           307: *
        !           308: *     Get machine constants
        !           309: *
        !           310:       EPS = DLAMCH( 'P' )
        !           311:       SMLNUM = DLAMCH( 'S' ) / EPS
        !           312:       BIGNUM = ONE / SMLNUM
        !           313:       CALL DLABAD( SMLNUM, BIGNUM )
        !           314:       KS = 0
        !           315:       DO 20 K = 1, N
        !           316: *
        !           317: *        Determine whether condition numbers are required for the k-th
        !           318: *        eigenpair.
        !           319: *
        !           320:          IF( SOMCON ) THEN
        !           321:             IF( .NOT.SELECT( K ) )
        !           322:      $         GO TO 20
        !           323:          END IF
        !           324: *
        !           325:          KS = KS + 1
        !           326: *
        !           327:          IF( WANTS ) THEN
        !           328: *
        !           329: *           Compute the reciprocal condition number of the k-th
        !           330: *           eigenvalue.
        !           331: *
        !           332:             RNRM = DZNRM2( N, VR( 1, KS ), 1 )
        !           333:             LNRM = DZNRM2( N, VL( 1, KS ), 1 )
        !           334:             CALL ZGEMV( 'N', N, N, DCMPLX( ONE, ZERO ), A, LDA,
        !           335:      $                  VR( 1, KS ), 1, DCMPLX( ZERO, ZERO ), WORK, 1 )
        !           336:             YHAX = ZDOTC( N, WORK, 1, VL( 1, KS ), 1 )
        !           337:             CALL ZGEMV( 'N', N, N, DCMPLX( ONE, ZERO ), B, LDB,
        !           338:      $                  VR( 1, KS ), 1, DCMPLX( ZERO, ZERO ), WORK, 1 )
        !           339:             YHBX = ZDOTC( N, WORK, 1, VL( 1, KS ), 1 )
        !           340:             COND = DLAPY2( ABS( YHAX ), ABS( YHBX ) )
        !           341:             IF( COND.EQ.ZERO ) THEN
        !           342:                S( KS ) = -ONE
        !           343:             ELSE
        !           344:                S( KS ) = COND / ( RNRM*LNRM )
        !           345:             END IF
        !           346:          END IF
        !           347: *
        !           348:          IF( WANTDF ) THEN
        !           349:             IF( N.EQ.1 ) THEN
        !           350:                DIF( KS ) = DLAPY2( ABS( A( 1, 1 ) ), ABS( B( 1, 1 ) ) )
        !           351:             ELSE
        !           352: *
        !           353: *              Estimate the reciprocal condition number of the k-th
        !           354: *              eigenvectors.
        !           355: *
        !           356: *              Copy the matrix (A, B) to the array WORK and move the
        !           357: *              (k,k)th pair to the (1,1) position.
        !           358: *
        !           359:                CALL ZLACPY( 'Full', N, N, A, LDA, WORK, N )
        !           360:                CALL ZLACPY( 'Full', N, N, B, LDB, WORK( N*N+1 ), N )
        !           361:                IFST = K
        !           362:                ILST = 1
        !           363: *
        !           364:                CALL ZTGEXC( .FALSE., .FALSE., N, WORK, N, WORK( N*N+1 ),
        !           365:      $                      N, DUMMY, 1, DUMMY1, 1, IFST, ILST, IERR )
        !           366: *
        !           367:                IF( IERR.GT.0 ) THEN
        !           368: *
        !           369: *                 Ill-conditioned problem - swap rejected.
        !           370: *
        !           371:                   DIF( KS ) = ZERO
        !           372:                ELSE
        !           373: *
        !           374: *                 Reordering successful, solve generalized Sylvester
        !           375: *                 equation for R and L,
        !           376: *                            A22 * R - L * A11 = A12
        !           377: *                            B22 * R - L * B11 = B12,
        !           378: *                 and compute estimate of Difl[(A11,B11), (A22, B22)].
        !           379: *
        !           380:                   N1 = 1
        !           381:                   N2 = N - N1
        !           382:                   I = N*N + 1
        !           383:                   CALL ZTGSYL( 'N', IDIFJB, N2, N1, WORK( N*N1+N1+1 ),
        !           384:      $                         N, WORK, N, WORK( N1+1 ), N,
        !           385:      $                         WORK( N*N1+N1+I ), N, WORK( I ), N,
        !           386:      $                         WORK( N1+I ), N, SCALE, DIF( KS ), DUMMY,
        !           387:      $                         1, IWORK, IERR )
        !           388:                END IF
        !           389:             END IF
        !           390:          END IF
        !           391: *
        !           392:    20 CONTINUE
        !           393:       WORK( 1 ) = LWMIN
        !           394:       RETURN
        !           395: *
        !           396: *     End of ZTGSNA
        !           397: *
        !           398:       END

CVSweb interface <joel.bertrand@systella.fr>