File:  [local] / rpl / lapack / lapack / ztgsja.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:22:45 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour globale de Lapack 3.2.2.

    1:       SUBROUTINE ZTGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B,
    2:      $                   LDB, TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV,
    3:      $                   Q, LDQ, WORK, NCYCLE, INFO )
    4: *
    5: *  -- LAPACK routine (version 3.2.1)                                 --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *  -- April 2009                                                      --
    9: *
   10: *     .. Scalar Arguments ..
   11:       CHARACTER          JOBQ, JOBU, JOBV
   12:       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N,
   13:      $                   NCYCLE, P
   14:       DOUBLE PRECISION   TOLA, TOLB
   15: *     ..
   16: *     .. Array Arguments ..
   17:       DOUBLE PRECISION   ALPHA( * ), BETA( * )
   18:       COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
   19:      $                   U( LDU, * ), V( LDV, * ), WORK( * )
   20: *     ..
   21: *
   22: *  Purpose
   23: *  =======
   24: *
   25: *  ZTGSJA computes the generalized singular value decomposition (GSVD)
   26: *  of two complex upper triangular (or trapezoidal) matrices A and B.
   27: *
   28: *  On entry, it is assumed that matrices A and B have the following
   29: *  forms, which may be obtained by the preprocessing subroutine ZGGSVP
   30: *  from a general M-by-N matrix A and P-by-N matrix B:
   31: *
   32: *               N-K-L  K    L
   33: *     A =    K ( 0    A12  A13 ) if M-K-L >= 0;
   34: *            L ( 0     0   A23 )
   35: *        M-K-L ( 0     0    0  )
   36: *
   37: *             N-K-L  K    L
   38: *     A =  K ( 0    A12  A13 ) if M-K-L < 0;
   39: *        M-K ( 0     0   A23 )
   40: *
   41: *             N-K-L  K    L
   42: *     B =  L ( 0     0   B13 )
   43: *        P-L ( 0     0    0  )
   44: *
   45: *  where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
   46: *  upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
   47: *  otherwise A23 is (M-K)-by-L upper trapezoidal.
   48: *
   49: *  On exit,
   50: *
   51: *         U'*A*Q = D1*( 0 R ),    V'*B*Q = D2*( 0 R ),
   52: *
   53: *  where U, V and Q are unitary matrices, Z' denotes the conjugate
   54: *  transpose of Z, R is a nonsingular upper triangular matrix, and D1
   55: *  and D2 are ``diagonal'' matrices, which are of the following
   56: *  structures:
   57: *
   58: *  If M-K-L >= 0,
   59: *
   60: *                      K  L
   61: *         D1 =     K ( I  0 )
   62: *                  L ( 0  C )
   63: *              M-K-L ( 0  0 )
   64: *
   65: *                     K  L
   66: *         D2 = L   ( 0  S )
   67: *              P-L ( 0  0 )
   68: *
   69: *                 N-K-L  K    L
   70: *    ( 0 R ) = K (  0   R11  R12 ) K
   71: *              L (  0    0   R22 ) L
   72: *
   73: *  where
   74: *
   75: *    C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
   76: *    S = diag( BETA(K+1),  ... , BETA(K+L) ),
   77: *    C**2 + S**2 = I.
   78: *
   79: *    R is stored in A(1:K+L,N-K-L+1:N) on exit.
   80: *
   81: *  If M-K-L < 0,
   82: *
   83: *                 K M-K K+L-M
   84: *      D1 =   K ( I  0    0   )
   85: *           M-K ( 0  C    0   )
   86: *
   87: *                   K M-K K+L-M
   88: *      D2 =   M-K ( 0  S    0   )
   89: *           K+L-M ( 0  0    I   )
   90: *             P-L ( 0  0    0   )
   91: *
   92: *                 N-K-L  K   M-K  K+L-M
   93: * ( 0 R ) =    K ( 0    R11  R12  R13  )
   94: *            M-K ( 0     0   R22  R23  )
   95: *          K+L-M ( 0     0    0   R33  )
   96: *
   97: *  where
   98: *  C = diag( ALPHA(K+1), ... , ALPHA(M) ),
   99: *  S = diag( BETA(K+1),  ... , BETA(M) ),
  100: *  C**2 + S**2 = I.
  101: *
  102: *  R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored
  103: *      (  0  R22 R23 )
  104: *  in B(M-K+1:L,N+M-K-L+1:N) on exit.
  105: *
  106: *  The computation of the unitary transformation matrices U, V or Q
  107: *  is optional.  These matrices may either be formed explicitly, or they
  108: *  may be postmultiplied into input matrices U1, V1, or Q1.
  109: *
  110: *  Arguments
  111: *  =========
  112: *
  113: *  JOBU    (input) CHARACTER*1
  114: *          = 'U':  U must contain a unitary matrix U1 on entry, and
  115: *                  the product U1*U is returned;
  116: *          = 'I':  U is initialized to the unit matrix, and the
  117: *                  unitary matrix U is returned;
  118: *          = 'N':  U is not computed.
  119: *
  120: *  JOBV    (input) CHARACTER*1
  121: *          = 'V':  V must contain a unitary matrix V1 on entry, and
  122: *                  the product V1*V is returned;
  123: *          = 'I':  V is initialized to the unit matrix, and the
  124: *                  unitary matrix V is returned;
  125: *          = 'N':  V is not computed.
  126: *
  127: *  JOBQ    (input) CHARACTER*1
  128: *          = 'Q':  Q must contain a unitary matrix Q1 on entry, and
  129: *                  the product Q1*Q is returned;
  130: *          = 'I':  Q is initialized to the unit matrix, and the
  131: *                  unitary matrix Q is returned;
  132: *          = 'N':  Q is not computed.
  133: *
  134: *  M       (input) INTEGER
  135: *          The number of rows of the matrix A.  M >= 0.
  136: *
  137: *  P       (input) INTEGER
  138: *          The number of rows of the matrix B.  P >= 0.
  139: *
  140: *  N       (input) INTEGER
  141: *          The number of columns of the matrices A and B.  N >= 0.
  142: *
  143: *  K       (input) INTEGER
  144: *  L       (input) INTEGER
  145: *          K and L specify the subblocks in the input matrices A and B:
  146: *          A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,,N-L+1:N)
  147: *          of A and B, whose GSVD is going to be computed by ZTGSJA.
  148: *          See Further Details.
  149: *
  150: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
  151: *          On entry, the M-by-N matrix A.
  152: *          On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular
  153: *          matrix R or part of R.  See Purpose for details.
  154: *
  155: *  LDA     (input) INTEGER
  156: *          The leading dimension of the array A. LDA >= max(1,M).
  157: *
  158: *  B       (input/output) COMPLEX*16 array, dimension (LDB,N)
  159: *          On entry, the P-by-N matrix B.
  160: *          On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains
  161: *          a part of R.  See Purpose for details.
  162: *
  163: *  LDB     (input) INTEGER
  164: *          The leading dimension of the array B. LDB >= max(1,P).
  165: *
  166: *  TOLA    (input) DOUBLE PRECISION
  167: *  TOLB    (input) DOUBLE PRECISION
  168: *          TOLA and TOLB are the convergence criteria for the Jacobi-
  169: *          Kogbetliantz iteration procedure. Generally, they are the
  170: *          same as used in the preprocessing step, say
  171: *              TOLA = MAX(M,N)*norm(A)*MAZHEPS,
  172: *              TOLB = MAX(P,N)*norm(B)*MAZHEPS.
  173: *
  174: *  ALPHA   (output) DOUBLE PRECISION array, dimension (N)
  175: *  BETA    (output) DOUBLE PRECISION array, dimension (N)
  176: *          On exit, ALPHA and BETA contain the generalized singular
  177: *          value pairs of A and B;
  178: *            ALPHA(1:K) = 1,
  179: *            BETA(1:K)  = 0,
  180: *          and if M-K-L >= 0,
  181: *            ALPHA(K+1:K+L) = diag(C),
  182: *            BETA(K+1:K+L)  = diag(S),
  183: *          or if M-K-L < 0,
  184: *            ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0
  185: *            BETA(K+1:M) = S, BETA(M+1:K+L) = 1.
  186: *          Furthermore, if K+L < N,
  187: *            ALPHA(K+L+1:N) = 0
  188: *            BETA(K+L+1:N)  = 0.
  189: *
  190: *  U       (input/output) COMPLEX*16 array, dimension (LDU,M)
  191: *          On entry, if JOBU = 'U', U must contain a matrix U1 (usually
  192: *          the unitary matrix returned by ZGGSVP).
  193: *          On exit,
  194: *          if JOBU = 'I', U contains the unitary matrix U;
  195: *          if JOBU = 'U', U contains the product U1*U.
  196: *          If JOBU = 'N', U is not referenced.
  197: *
  198: *  LDU     (input) INTEGER
  199: *          The leading dimension of the array U. LDU >= max(1,M) if
  200: *          JOBU = 'U'; LDU >= 1 otherwise.
  201: *
  202: *  V       (input/output) COMPLEX*16 array, dimension (LDV,P)
  203: *          On entry, if JOBV = 'V', V must contain a matrix V1 (usually
  204: *          the unitary matrix returned by ZGGSVP).
  205: *          On exit,
  206: *          if JOBV = 'I', V contains the unitary matrix V;
  207: *          if JOBV = 'V', V contains the product V1*V.
  208: *          If JOBV = 'N', V is not referenced.
  209: *
  210: *  LDV     (input) INTEGER
  211: *          The leading dimension of the array V. LDV >= max(1,P) if
  212: *          JOBV = 'V'; LDV >= 1 otherwise.
  213: *
  214: *  Q       (input/output) COMPLEX*16 array, dimension (LDQ,N)
  215: *          On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually
  216: *          the unitary matrix returned by ZGGSVP).
  217: *          On exit,
  218: *          if JOBQ = 'I', Q contains the unitary matrix Q;
  219: *          if JOBQ = 'Q', Q contains the product Q1*Q.
  220: *          If JOBQ = 'N', Q is not referenced.
  221: *
  222: *  LDQ     (input) INTEGER
  223: *          The leading dimension of the array Q. LDQ >= max(1,N) if
  224: *          JOBQ = 'Q'; LDQ >= 1 otherwise.
  225: *
  226: *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
  227: *
  228: *  NCYCLE  (output) INTEGER
  229: *          The number of cycles required for convergence.
  230: *
  231: *  INFO    (output) INTEGER
  232: *          = 0:  successful exit
  233: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
  234: *          = 1:  the procedure does not converge after MAXIT cycles.
  235: *
  236: *  Internal Parameters
  237: *  ===================
  238: *
  239: *  MAXIT   INTEGER
  240: *          MAXIT specifies the total loops that the iterative procedure
  241: *          may take. If after MAXIT cycles, the routine fails to
  242: *          converge, we return INFO = 1.
  243: *
  244: *  Further Details
  245: *  ===============
  246: *
  247: *  ZTGSJA essentially uses a variant of Kogbetliantz algorithm to reduce
  248: *  min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L
  249: *  matrix B13 to the form:
  250: *
  251: *           U1'*A13*Q1 = C1*R1; V1'*B13*Q1 = S1*R1,
  252: *
  253: *  where U1, V1 and Q1 are unitary matrix, and Z' is the conjugate
  254: *  transpose of Z.  C1 and S1 are diagonal matrices satisfying
  255: *
  256: *                C1**2 + S1**2 = I,
  257: *
  258: *  and R1 is an L-by-L nonsingular upper triangular matrix.
  259: *
  260: *  =====================================================================
  261: *
  262: *     .. Parameters ..
  263:       INTEGER            MAXIT
  264:       PARAMETER          ( MAXIT = 40 )
  265:       DOUBLE PRECISION   ZERO, ONE
  266:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  267:       COMPLEX*16         CZERO, CONE
  268:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
  269:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
  270: *     ..
  271: *     .. Local Scalars ..
  272: *
  273:       LOGICAL            INITQ, INITU, INITV, UPPER, WANTQ, WANTU, WANTV
  274:       INTEGER            I, J, KCYCLE
  275:       DOUBLE PRECISION   A1, A3, B1, B3, CSQ, CSU, CSV, ERROR, GAMMA,
  276:      $                   RWK, SSMIN
  277:       COMPLEX*16         A2, B2, SNQ, SNU, SNV
  278: *     ..
  279: *     .. External Functions ..
  280:       LOGICAL            LSAME
  281:       EXTERNAL           LSAME
  282: *     ..
  283: *     .. External Subroutines ..
  284:       EXTERNAL           DLARTG, XERBLA, ZCOPY, ZDSCAL, ZLAGS2, ZLAPLL,
  285:      $                   ZLASET, ZROT
  286: *     ..
  287: *     .. Intrinsic Functions ..
  288:       INTRINSIC          ABS, DBLE, DCONJG, MAX, MIN
  289: *     ..
  290: *     .. Executable Statements ..
  291: *
  292: *     Decode and test the input parameters
  293: *
  294:       INITU = LSAME( JOBU, 'I' )
  295:       WANTU = INITU .OR. LSAME( JOBU, 'U' )
  296: *
  297:       INITV = LSAME( JOBV, 'I' )
  298:       WANTV = INITV .OR. LSAME( JOBV, 'V' )
  299: *
  300:       INITQ = LSAME( JOBQ, 'I' )
  301:       WANTQ = INITQ .OR. LSAME( JOBQ, 'Q' )
  302: *
  303:       INFO = 0
  304:       IF( .NOT.( INITU .OR. WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
  305:          INFO = -1
  306:       ELSE IF( .NOT.( INITV .OR. WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
  307:          INFO = -2
  308:       ELSE IF( .NOT.( INITQ .OR. WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
  309:          INFO = -3
  310:       ELSE IF( M.LT.0 ) THEN
  311:          INFO = -4
  312:       ELSE IF( P.LT.0 ) THEN
  313:          INFO = -5
  314:       ELSE IF( N.LT.0 ) THEN
  315:          INFO = -6
  316:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  317:          INFO = -10
  318:       ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
  319:          INFO = -12
  320:       ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
  321:          INFO = -18
  322:       ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
  323:          INFO = -20
  324:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
  325:          INFO = -22
  326:       END IF
  327:       IF( INFO.NE.0 ) THEN
  328:          CALL XERBLA( 'ZTGSJA', -INFO )
  329:          RETURN
  330:       END IF
  331: *
  332: *     Initialize U, V and Q, if necessary
  333: *
  334:       IF( INITU )
  335:      $   CALL ZLASET( 'Full', M, M, CZERO, CONE, U, LDU )
  336:       IF( INITV )
  337:      $   CALL ZLASET( 'Full', P, P, CZERO, CONE, V, LDV )
  338:       IF( INITQ )
  339:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, Q, LDQ )
  340: *
  341: *     Loop until convergence
  342: *
  343:       UPPER = .FALSE.
  344:       DO 40 KCYCLE = 1, MAXIT
  345: *
  346:          UPPER = .NOT.UPPER
  347: *
  348:          DO 20 I = 1, L - 1
  349:             DO 10 J = I + 1, L
  350: *
  351:                A1 = ZERO
  352:                A2 = CZERO
  353:                A3 = ZERO
  354:                IF( K+I.LE.M )
  355:      $            A1 = DBLE( A( K+I, N-L+I ) )
  356:                IF( K+J.LE.M )
  357:      $            A3 = DBLE( A( K+J, N-L+J ) )
  358: *
  359:                B1 = DBLE( B( I, N-L+I ) )
  360:                B3 = DBLE( B( J, N-L+J ) )
  361: *
  362:                IF( UPPER ) THEN
  363:                   IF( K+I.LE.M )
  364:      $               A2 = A( K+I, N-L+J )
  365:                   B2 = B( I, N-L+J )
  366:                ELSE
  367:                   IF( K+J.LE.M )
  368:      $               A2 = A( K+J, N-L+I )
  369:                   B2 = B( J, N-L+I )
  370:                END IF
  371: *
  372:                CALL ZLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU,
  373:      $                      CSV, SNV, CSQ, SNQ )
  374: *
  375: *              Update (K+I)-th and (K+J)-th rows of matrix A: U'*A
  376: *
  377:                IF( K+J.LE.M )
  378:      $            CALL ZROT( L, A( K+J, N-L+1 ), LDA, A( K+I, N-L+1 ),
  379:      $                       LDA, CSU, DCONJG( SNU ) )
  380: *
  381: *              Update I-th and J-th rows of matrix B: V'*B
  382: *
  383:                CALL ZROT( L, B( J, N-L+1 ), LDB, B( I, N-L+1 ), LDB,
  384:      $                    CSV, DCONJG( SNV ) )
  385: *
  386: *              Update (N-L+I)-th and (N-L+J)-th columns of matrices
  387: *              A and B: A*Q and B*Q
  388: *
  389:                CALL ZROT( MIN( K+L, M ), A( 1, N-L+J ), 1,
  390:      $                    A( 1, N-L+I ), 1, CSQ, SNQ )
  391: *
  392:                CALL ZROT( L, B( 1, N-L+J ), 1, B( 1, N-L+I ), 1, CSQ,
  393:      $                    SNQ )
  394: *
  395:                IF( UPPER ) THEN
  396:                   IF( K+I.LE.M )
  397:      $               A( K+I, N-L+J ) = CZERO
  398:                   B( I, N-L+J ) = CZERO
  399:                ELSE
  400:                   IF( K+J.LE.M )
  401:      $               A( K+J, N-L+I ) = CZERO
  402:                   B( J, N-L+I ) = CZERO
  403:                END IF
  404: *
  405: *              Ensure that the diagonal elements of A and B are real.
  406: *
  407:                IF( K+I.LE.M )
  408:      $            A( K+I, N-L+I ) = DBLE( A( K+I, N-L+I ) )
  409:                IF( K+J.LE.M )
  410:      $            A( K+J, N-L+J ) = DBLE( A( K+J, N-L+J ) )
  411:                B( I, N-L+I ) = DBLE( B( I, N-L+I ) )
  412:                B( J, N-L+J ) = DBLE( B( J, N-L+J ) )
  413: *
  414: *              Update unitary matrices U, V, Q, if desired.
  415: *
  416:                IF( WANTU .AND. K+J.LE.M )
  417:      $            CALL ZROT( M, U( 1, K+J ), 1, U( 1, K+I ), 1, CSU,
  418:      $                       SNU )
  419: *
  420:                IF( WANTV )
  421:      $            CALL ZROT( P, V( 1, J ), 1, V( 1, I ), 1, CSV, SNV )
  422: *
  423:                IF( WANTQ )
  424:      $            CALL ZROT( N, Q( 1, N-L+J ), 1, Q( 1, N-L+I ), 1, CSQ,
  425:      $                       SNQ )
  426: *
  427:    10       CONTINUE
  428:    20    CONTINUE
  429: *
  430:          IF( .NOT.UPPER ) THEN
  431: *
  432: *           The matrices A13 and B13 were lower triangular at the start
  433: *           of the cycle, and are now upper triangular.
  434: *
  435: *           Convergence test: test the parallelism of the corresponding
  436: *           rows of A and B.
  437: *
  438:             ERROR = ZERO
  439:             DO 30 I = 1, MIN( L, M-K )
  440:                CALL ZCOPY( L-I+1, A( K+I, N-L+I ), LDA, WORK, 1 )
  441:                CALL ZCOPY( L-I+1, B( I, N-L+I ), LDB, WORK( L+1 ), 1 )
  442:                CALL ZLAPLL( L-I+1, WORK, 1, WORK( L+1 ), 1, SSMIN )
  443:                ERROR = MAX( ERROR, SSMIN )
  444:    30       CONTINUE
  445: *
  446:             IF( ABS( ERROR ).LE.MIN( TOLA, TOLB ) )
  447:      $         GO TO 50
  448:          END IF
  449: *
  450: *        End of cycle loop
  451: *
  452:    40 CONTINUE
  453: *
  454: *     The algorithm has not converged after MAXIT cycles.
  455: *
  456:       INFO = 1
  457:       GO TO 100
  458: *
  459:    50 CONTINUE
  460: *
  461: *     If ERROR <= MIN(TOLA,TOLB), then the algorithm has converged.
  462: *     Compute the generalized singular value pairs (ALPHA, BETA), and
  463: *     set the triangular matrix R to array A.
  464: *
  465:       DO 60 I = 1, K
  466:          ALPHA( I ) = ONE
  467:          BETA( I ) = ZERO
  468:    60 CONTINUE
  469: *
  470:       DO 70 I = 1, MIN( L, M-K )
  471: *
  472:          A1 = DBLE( A( K+I, N-L+I ) )
  473:          B1 = DBLE( B( I, N-L+I ) )
  474: *
  475:          IF( A1.NE.ZERO ) THEN
  476:             GAMMA = B1 / A1
  477: *
  478:             IF( GAMMA.LT.ZERO ) THEN
  479:                CALL ZDSCAL( L-I+1, -ONE, B( I, N-L+I ), LDB )
  480:                IF( WANTV )
  481:      $            CALL ZDSCAL( P, -ONE, V( 1, I ), 1 )
  482:             END IF
  483: *
  484:             CALL DLARTG( ABS( GAMMA ), ONE, BETA( K+I ), ALPHA( K+I ),
  485:      $                   RWK )
  486: *
  487:             IF( ALPHA( K+I ).GE.BETA( K+I ) ) THEN
  488:                CALL ZDSCAL( L-I+1, ONE / ALPHA( K+I ), A( K+I, N-L+I ),
  489:      $                      LDA )
  490:             ELSE
  491:                CALL ZDSCAL( L-I+1, ONE / BETA( K+I ), B( I, N-L+I ),
  492:      $                      LDB )
  493:                CALL ZCOPY( L-I+1, B( I, N-L+I ), LDB, A( K+I, N-L+I ),
  494:      $                     LDA )
  495:             END IF
  496: *
  497:          ELSE
  498:             ALPHA( K+I ) = ZERO
  499:             BETA( K+I ) = ONE
  500:             CALL ZCOPY( L-I+1, B( I, N-L+I ), LDB, A( K+I, N-L+I ),
  501:      $                  LDA )
  502:          END IF
  503:    70 CONTINUE
  504: *
  505: *     Post-assignment
  506: *
  507:       DO 80 I = M + 1, K + L
  508:          ALPHA( I ) = ZERO
  509:          BETA( I ) = ONE
  510:    80 CONTINUE
  511: *
  512:       IF( K+L.LT.N ) THEN
  513:          DO 90 I = K + L + 1, N
  514:             ALPHA( I ) = ZERO
  515:             BETA( I ) = ZERO
  516:    90    CONTINUE
  517:       END IF
  518: *
  519:   100 CONTINUE
  520:       NCYCLE = KCYCLE
  521: *
  522:       RETURN
  523: *
  524: *     End of ZTGSJA
  525: *
  526:       END

CVSweb interface <joel.bertrand@systella.fr>