File:  [local] / rpl / lapack / lapack / ztgsen.f
Revision 1.11: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 22:19:58 2011 UTC (12 years, 6 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_8, rpl-4_1_7, rpl-4_1_6, rpl-4_1_5, rpl-4_1_4, HEAD
Cohérence

    1: *> \brief \b ZTGSEN
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZTGSEN + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztgsen.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztgsen.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztgsen.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
   22: *                          ALPHA, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF,
   23: *                          WORK, LWORK, IWORK, LIWORK, INFO )
   24:    25: *       .. Scalar Arguments ..
   26: *       LOGICAL            WANTQ, WANTZ
   27: *       INTEGER            IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
   28: *      $                   M, N
   29: *       DOUBLE PRECISION   PL, PR
   30: *       ..
   31: *       .. Array Arguments ..
   32: *       LOGICAL            SELECT( * )
   33: *       INTEGER            IWORK( * )
   34: *       DOUBLE PRECISION   DIF( * )
   35: *       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
   36: *      $                   BETA( * ), Q( LDQ, * ), WORK( * ), Z( LDZ, * )
   37: *       ..
   38: *  
   39: *
   40: *> \par Purpose:
   41: *  =============
   42: *>
   43: *> \verbatim
   44: *>
   45: *> ZTGSEN reorders the generalized Schur decomposition of a complex
   46: *> matrix pair (A, B) (in terms of an unitary equivalence trans-
   47: *> formation Q**H * (A, B) * Z), so that a selected cluster of eigenvalues
   48: *> appears in the leading diagonal blocks of the pair (A,B). The leading
   49: *> columns of Q and Z form unitary bases of the corresponding left and
   50: *> right eigenspaces (deflating subspaces). (A, B) must be in
   51: *> generalized Schur canonical form, that is, A and B are both upper
   52: *> triangular.
   53: *>
   54: *> ZTGSEN also computes the generalized eigenvalues
   55: *>
   56: *>          w(j)= ALPHA(j) / BETA(j)
   57: *>
   58: *> of the reordered matrix pair (A, B).
   59: *>
   60: *> Optionally, the routine computes estimates of reciprocal condition
   61: *> numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
   62: *> (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
   63: *> between the matrix pairs (A11, B11) and (A22,B22) that correspond to
   64: *> the selected cluster and the eigenvalues outside the cluster, resp.,
   65: *> and norms of "projections" onto left and right eigenspaces w.r.t.
   66: *> the selected cluster in the (1,1)-block.
   67: *>
   68: *> \endverbatim
   69: *
   70: *  Arguments:
   71: *  ==========
   72: *
   73: *> \param[in] IJOB
   74: *> \verbatim
   75: *>          IJOB is integer
   76: *>          Specifies whether condition numbers are required for the
   77: *>          cluster of eigenvalues (PL and PR) or the deflating subspaces
   78: *>          (Difu and Difl):
   79: *>           =0: Only reorder w.r.t. SELECT. No extras.
   80: *>           =1: Reciprocal of norms of "projections" onto left and right
   81: *>               eigenspaces w.r.t. the selected cluster (PL and PR).
   82: *>           =2: Upper bounds on Difu and Difl. F-norm-based estimate
   83: *>               (DIF(1:2)).
   84: *>           =3: Estimate of Difu and Difl. 1-norm-based estimate
   85: *>               (DIF(1:2)).
   86: *>               About 5 times as expensive as IJOB = 2.
   87: *>           =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
   88: *>               version to get it all.
   89: *>           =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)
   90: *> \endverbatim
   91: *>
   92: *> \param[in] WANTQ
   93: *> \verbatim
   94: *>          WANTQ is LOGICAL
   95: *>          .TRUE. : update the left transformation matrix Q;
   96: *>          .FALSE.: do not update Q.
   97: *> \endverbatim
   98: *>
   99: *> \param[in] WANTZ
  100: *> \verbatim
  101: *>          WANTZ is LOGICAL
  102: *>          .TRUE. : update the right transformation matrix Z;
  103: *>          .FALSE.: do not update Z.
  104: *> \endverbatim
  105: *>
  106: *> \param[in] SELECT
  107: *> \verbatim
  108: *>          SELECT is LOGICAL array, dimension (N)
  109: *>          SELECT specifies the eigenvalues in the selected cluster. To
  110: *>          select an eigenvalue w(j), SELECT(j) must be set to
  111: *>          .TRUE..
  112: *> \endverbatim
  113: *>
  114: *> \param[in] N
  115: *> \verbatim
  116: *>          N is INTEGER
  117: *>          The order of the matrices A and B. N >= 0.
  118: *> \endverbatim
  119: *>
  120: *> \param[in,out] A
  121: *> \verbatim
  122: *>          A is COMPLEX*16 array, dimension(LDA,N)
  123: *>          On entry, the upper triangular matrix A, in generalized
  124: *>          Schur canonical form.
  125: *>          On exit, A is overwritten by the reordered matrix A.
  126: *> \endverbatim
  127: *>
  128: *> \param[in] LDA
  129: *> \verbatim
  130: *>          LDA is INTEGER
  131: *>          The leading dimension of the array A. LDA >= max(1,N).
  132: *> \endverbatim
  133: *>
  134: *> \param[in,out] B
  135: *> \verbatim
  136: *>          B is COMPLEX*16 array, dimension(LDB,N)
  137: *>          On entry, the upper triangular matrix B, in generalized
  138: *>          Schur canonical form.
  139: *>          On exit, B is overwritten by the reordered matrix B.
  140: *> \endverbatim
  141: *>
  142: *> \param[in] LDB
  143: *> \verbatim
  144: *>          LDB is INTEGER
  145: *>          The leading dimension of the array B. LDB >= max(1,N).
  146: *> \endverbatim
  147: *>
  148: *> \param[out] ALPHA
  149: *> \verbatim
  150: *>          ALPHA is COMPLEX*16 array, dimension (N)
  151: *> \endverbatim
  152: *>
  153: *> \param[out] BETA
  154: *> \verbatim
  155: *>          BETA is COMPLEX*16 array, dimension (N)
  156: *>
  157: *>          The diagonal elements of A and B, respectively,
  158: *>          when the pair (A,B) has been reduced to generalized Schur
  159: *>          form.  ALPHA(i)/BETA(i) i=1,...,N are the generalized
  160: *>          eigenvalues.
  161: *> \endverbatim
  162: *>
  163: *> \param[in,out] Q
  164: *> \verbatim
  165: *>          Q is COMPLEX*16 array, dimension (LDQ,N)
  166: *>          On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
  167: *>          On exit, Q has been postmultiplied by the left unitary
  168: *>          transformation matrix which reorder (A, B); The leading M
  169: *>          columns of Q form orthonormal bases for the specified pair of
  170: *>          left eigenspaces (deflating subspaces).
  171: *>          If WANTQ = .FALSE., Q is not referenced.
  172: *> \endverbatim
  173: *>
  174: *> \param[in] LDQ
  175: *> \verbatim
  176: *>          LDQ is INTEGER
  177: *>          The leading dimension of the array Q. LDQ >= 1.
  178: *>          If WANTQ = .TRUE., LDQ >= N.
  179: *> \endverbatim
  180: *>
  181: *> \param[in,out] Z
  182: *> \verbatim
  183: *>          Z is COMPLEX*16 array, dimension (LDZ,N)
  184: *>          On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
  185: *>          On exit, Z has been postmultiplied by the left unitary
  186: *>          transformation matrix which reorder (A, B); The leading M
  187: *>          columns of Z form orthonormal bases for the specified pair of
  188: *>          left eigenspaces (deflating subspaces).
  189: *>          If WANTZ = .FALSE., Z is not referenced.
  190: *> \endverbatim
  191: *>
  192: *> \param[in] LDZ
  193: *> \verbatim
  194: *>          LDZ is INTEGER
  195: *>          The leading dimension of the array Z. LDZ >= 1.
  196: *>          If WANTZ = .TRUE., LDZ >= N.
  197: *> \endverbatim
  198: *>
  199: *> \param[out] M
  200: *> \verbatim
  201: *>          M is INTEGER
  202: *>          The dimension of the specified pair of left and right
  203: *>          eigenspaces, (deflating subspaces) 0 <= M <= N.
  204: *> \endverbatim
  205: *>
  206: *> \param[out] PL
  207: *> \verbatim
  208: *>          PL is DOUBLE PRECISION
  209: *> \endverbatim
  210: *>
  211: *> \param[out] PR
  212: *> \verbatim
  213: *>          PR is DOUBLE PRECISION
  214: *>
  215: *>          If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
  216: *>          reciprocal  of the norm of "projections" onto left and right
  217: *>          eigenspace with respect to the selected cluster.
  218: *>          0 < PL, PR <= 1.
  219: *>          If M = 0 or M = N, PL = PR  = 1.
  220: *>          If IJOB = 0, 2 or 3 PL, PR are not referenced.
  221: *> \endverbatim
  222: *>
  223: *> \param[out] DIF
  224: *> \verbatim
  225: *>          DIF is DOUBLE PRECISION array, dimension (2).
  226: *>          If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
  227: *>          If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
  228: *>          Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
  229: *>          estimates of Difu and Difl, computed using reversed
  230: *>          communication with ZLACN2.
  231: *>          If M = 0 or N, DIF(1:2) = F-norm([A, B]).
  232: *>          If IJOB = 0 or 1, DIF is not referenced.
  233: *> \endverbatim
  234: *>
  235: *> \param[out] WORK
  236: *> \verbatim
  237: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  238: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  239: *> \endverbatim
  240: *>
  241: *> \param[in] LWORK
  242: *> \verbatim
  243: *>          LWORK is INTEGER
  244: *>          The dimension of the array WORK. LWORK >=  1
  245: *>          If IJOB = 1, 2 or 4, LWORK >=  2*M*(N-M)
  246: *>          If IJOB = 3 or 5, LWORK >=  4*M*(N-M)
  247: *>
  248: *>          If LWORK = -1, then a workspace query is assumed; the routine
  249: *>          only calculates the optimal size of the WORK array, returns
  250: *>          this value as the first entry of the WORK array, and no error
  251: *>          message related to LWORK is issued by XERBLA.
  252: *> \endverbatim
  253: *>
  254: *> \param[out] IWORK
  255: *> \verbatim
  256: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  257: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
  258: *> \endverbatim
  259: *>
  260: *> \param[in] LIWORK
  261: *> \verbatim
  262: *>          LIWORK is INTEGER
  263: *>          The dimension of the array IWORK. LIWORK >= 1.
  264: *>          If IJOB = 1, 2 or 4, LIWORK >=  N+2;
  265: *>          If IJOB = 3 or 5, LIWORK >= MAX(N+2, 2*M*(N-M));
  266: *>
  267: *>          If LIWORK = -1, then a workspace query is assumed; the
  268: *>          routine only calculates the optimal size of the IWORK array,
  269: *>          returns this value as the first entry of the IWORK array, and
  270: *>          no error message related to LIWORK is issued by XERBLA.
  271: *> \endverbatim
  272: *>
  273: *> \param[out] INFO
  274: *> \verbatim
  275: *>          INFO is INTEGER
  276: *>            =0: Successful exit.
  277: *>            <0: If INFO = -i, the i-th argument had an illegal value.
  278: *>            =1: Reordering of (A, B) failed because the transformed
  279: *>                matrix pair (A, B) would be too far from generalized
  280: *>                Schur form; the problem is very ill-conditioned.
  281: *>                (A, B) may have been partially reordered.
  282: *>                If requested, 0 is returned in DIF(*), PL and PR.
  283: *> \endverbatim
  284: *
  285: *  Authors:
  286: *  ========
  287: *
  288: *> \author Univ. of Tennessee 
  289: *> \author Univ. of California Berkeley 
  290: *> \author Univ. of Colorado Denver 
  291: *> \author NAG Ltd. 
  292: *
  293: *> \date November 2011
  294: *
  295: *> \ingroup complex16OTHERcomputational
  296: *
  297: *> \par Further Details:
  298: *  =====================
  299: *>
  300: *> \verbatim
  301: *>
  302: *>  ZTGSEN first collects the selected eigenvalues by computing unitary
  303: *>  U and W that move them to the top left corner of (A, B). In other
  304: *>  words, the selected eigenvalues are the eigenvalues of (A11, B11) in
  305: *>
  306: *>              U**H*(A, B)*W = (A11 A12) (B11 B12) n1
  307: *>                              ( 0  A22),( 0  B22) n2
  308: *>                                n1  n2    n1  n2
  309: *>
  310: *>  where N = n1+n2 and U**H means the conjugate transpose of U. The first
  311: *>  n1 columns of U and W span the specified pair of left and right
  312: *>  eigenspaces (deflating subspaces) of (A, B).
  313: *>
  314: *>  If (A, B) has been obtained from the generalized real Schur
  315: *>  decomposition of a matrix pair (C, D) = Q*(A, B)*Z**H, then the
  316: *>  reordered generalized Schur form of (C, D) is given by
  317: *>
  318: *>           (C, D) = (Q*U)*(U**H *(A, B)*W)*(Z*W)**H,
  319: *>
  320: *>  and the first n1 columns of Q*U and Z*W span the corresponding
  321: *>  deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
  322: *>
  323: *>  Note that if the selected eigenvalue is sufficiently ill-conditioned,
  324: *>  then its value may differ significantly from its value before
  325: *>  reordering.
  326: *>
  327: *>  The reciprocal condition numbers of the left and right eigenspaces
  328: *>  spanned by the first n1 columns of U and W (or Q*U and Z*W) may
  329: *>  be returned in DIF(1:2), corresponding to Difu and Difl, resp.
  330: *>
  331: *>  The Difu and Difl are defined as:
  332: *>
  333: *>       Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
  334: *>  and
  335: *>       Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
  336: *>
  337: *>  where sigma-min(Zu) is the smallest singular value of the
  338: *>  (2*n1*n2)-by-(2*n1*n2) matrix
  339: *>
  340: *>       Zu = [ kron(In2, A11)  -kron(A22**H, In1) ]
  341: *>            [ kron(In2, B11)  -kron(B22**H, In1) ].
  342: *>
  343: *>  Here, Inx is the identity matrix of size nx and A22**H is the
  344: *>  conjugate transpose of A22. kron(X, Y) is the Kronecker product between
  345: *>  the matrices X and Y.
  346: *>
  347: *>  When DIF(2) is small, small changes in (A, B) can cause large changes
  348: *>  in the deflating subspace. An approximate (asymptotic) bound on the
  349: *>  maximum angular error in the computed deflating subspaces is
  350: *>
  351: *>       EPS * norm((A, B)) / DIF(2),
  352: *>
  353: *>  where EPS is the machine precision.
  354: *>
  355: *>  The reciprocal norm of the projectors on the left and right
  356: *>  eigenspaces associated with (A11, B11) may be returned in PL and PR.
  357: *>  They are computed as follows. First we compute L and R so that
  358: *>  P*(A, B)*Q is block diagonal, where
  359: *>
  360: *>       P = ( I -L ) n1           Q = ( I R ) n1
  361: *>           ( 0  I ) n2    and        ( 0 I ) n2
  362: *>             n1 n2                    n1 n2
  363: *>
  364: *>  and (L, R) is the solution to the generalized Sylvester equation
  365: *>
  366: *>       A11*R - L*A22 = -A12
  367: *>       B11*R - L*B22 = -B12
  368: *>
  369: *>  Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
  370: *>  An approximate (asymptotic) bound on the average absolute error of
  371: *>  the selected eigenvalues is
  372: *>
  373: *>       EPS * norm((A, B)) / PL.
  374: *>
  375: *>  There are also global error bounds which valid for perturbations up
  376: *>  to a certain restriction:  A lower bound (x) on the smallest
  377: *>  F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
  378: *>  coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
  379: *>  (i.e. (A + E, B + F), is
  380: *>
  381: *>   x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
  382: *>
  383: *>  An approximate bound on x can be computed from DIF(1:2), PL and PR.
  384: *>
  385: *>  If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
  386: *>  (L', R') and unperturbed (L, R) left and right deflating subspaces
  387: *>  associated with the selected cluster in the (1,1)-blocks can be
  388: *>  bounded as
  389: *>
  390: *>   max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
  391: *>   max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
  392: *>
  393: *>  See LAPACK User's Guide section 4.11 or the following references
  394: *>  for more information.
  395: *>
  396: *>  Note that if the default method for computing the Frobenius-norm-
  397: *>  based estimate DIF is not wanted (see ZLATDF), then the parameter
  398: *>  IDIFJB (see below) should be changed from 3 to 4 (routine ZLATDF
  399: *>  (IJOB = 2 will be used)). See ZTGSYL for more details.
  400: *> \endverbatim
  401: *
  402: *> \par Contributors:
  403: *  ==================
  404: *>
  405: *>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
  406: *>     Umea University, S-901 87 Umea, Sweden.
  407: *
  408: *> \par References:
  409: *  ================
  410: *>
  411: *>  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
  412: *>      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
  413: *>      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
  414: *>      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
  415: *> \n
  416: *>  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
  417: *>      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
  418: *>      Estimation: Theory, Algorithms and Software, Report
  419: *>      UMINF - 94.04, Department of Computing Science, Umea University,
  420: *>      S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.
  421: *>      To appear in Numerical Algorithms, 1996.
  422: *> \n
  423: *>  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
  424: *>      for Solving the Generalized Sylvester Equation and Estimating the
  425: *>      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
  426: *>      Department of Computing Science, Umea University, S-901 87 Umea,
  427: *>      Sweden, December 1993, Revised April 1994, Also as LAPACK working
  428: *>      Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
  429: *>      1996.
  430: *>
  431: *  =====================================================================
  432:       SUBROUTINE ZTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
  433:      $                   ALPHA, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF,
  434:      $                   WORK, LWORK, IWORK, LIWORK, INFO )
  435: *
  436: *  -- LAPACK computational routine (version 3.4.0) --
  437: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  438: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  439: *     November 2011
  440: *
  441: *     .. Scalar Arguments ..
  442:       LOGICAL            WANTQ, WANTZ
  443:       INTEGER            IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
  444:      $                   M, N
  445:       DOUBLE PRECISION   PL, PR
  446: *     ..
  447: *     .. Array Arguments ..
  448:       LOGICAL            SELECT( * )
  449:       INTEGER            IWORK( * )
  450:       DOUBLE PRECISION   DIF( * )
  451:       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
  452:      $                   BETA( * ), Q( LDQ, * ), WORK( * ), Z( LDZ, * )
  453: *     ..
  454: *
  455: *  =====================================================================
  456: *
  457: *     .. Parameters ..
  458:       INTEGER            IDIFJB
  459:       PARAMETER          ( IDIFJB = 3 )
  460:       DOUBLE PRECISION   ZERO, ONE
  461:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  462: *     ..
  463: *     .. Local Scalars ..
  464:       LOGICAL            LQUERY, SWAP, WANTD, WANTD1, WANTD2, WANTP
  465:       INTEGER            I, IERR, IJB, K, KASE, KS, LIWMIN, LWMIN, MN2,
  466:      $                   N1, N2
  467:       DOUBLE PRECISION   DSCALE, DSUM, RDSCAL, SAFMIN
  468:       COMPLEX*16         TEMP1, TEMP2
  469: *     ..
  470: *     .. Local Arrays ..
  471:       INTEGER            ISAVE( 3 )
  472: *     ..
  473: *     .. External Subroutines ..
  474:       EXTERNAL           XERBLA, ZLACN2, ZLACPY, ZLASSQ, ZSCAL, ZTGEXC,
  475:      $                   ZTGSYL
  476: *     ..
  477: *     .. Intrinsic Functions ..
  478:       INTRINSIC          ABS, DCMPLX, DCONJG, MAX, SQRT
  479: *     ..
  480: *     .. External Functions ..
  481:       DOUBLE PRECISION   DLAMCH
  482:       EXTERNAL           DLAMCH
  483: *     ..
  484: *     .. Executable Statements ..
  485: *
  486: *     Decode and test the input parameters
  487: *
  488:       INFO = 0
  489:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
  490: *
  491:       IF( IJOB.LT.0 .OR. IJOB.GT.5 ) THEN
  492:          INFO = -1
  493:       ELSE IF( N.LT.0 ) THEN
  494:          INFO = -5
  495:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  496:          INFO = -7
  497:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  498:          INFO = -9
  499:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
  500:          INFO = -13
  501:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
  502:          INFO = -15
  503:       END IF
  504: *
  505:       IF( INFO.NE.0 ) THEN
  506:          CALL XERBLA( 'ZTGSEN', -INFO )
  507:          RETURN
  508:       END IF
  509: *
  510:       IERR = 0
  511: *
  512:       WANTP = IJOB.EQ.1 .OR. IJOB.GE.4
  513:       WANTD1 = IJOB.EQ.2 .OR. IJOB.EQ.4
  514:       WANTD2 = IJOB.EQ.3 .OR. IJOB.EQ.5
  515:       WANTD = WANTD1 .OR. WANTD2
  516: *
  517: *     Set M to the dimension of the specified pair of deflating
  518: *     subspaces.
  519: *
  520:       M = 0
  521:       DO 10 K = 1, N
  522:          ALPHA( K ) = A( K, K )
  523:          BETA( K ) = B( K, K )
  524:          IF( K.LT.N ) THEN
  525:             IF( SELECT( K ) )
  526:      $         M = M + 1
  527:          ELSE
  528:             IF( SELECT( N ) )
  529:      $         M = M + 1
  530:          END IF
  531:    10 CONTINUE
  532: *
  533:       IF( IJOB.EQ.1 .OR. IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN
  534:          LWMIN = MAX( 1, 2*M*( N-M ) )
  535:          LIWMIN = MAX( 1, N+2 )
  536:       ELSE IF( IJOB.EQ.3 .OR. IJOB.EQ.5 ) THEN
  537:          LWMIN = MAX( 1, 4*M*( N-M ) )
  538:          LIWMIN = MAX( 1, 2*M*( N-M ), N+2 )
  539:       ELSE
  540:          LWMIN = 1
  541:          LIWMIN = 1
  542:       END IF
  543: *
  544:       WORK( 1 ) = LWMIN
  545:       IWORK( 1 ) = LIWMIN
  546: *
  547:       IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  548:          INFO = -21
  549:       ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  550:          INFO = -23
  551:       END IF
  552: *
  553:       IF( INFO.NE.0 ) THEN
  554:          CALL XERBLA( 'ZTGSEN', -INFO )
  555:          RETURN
  556:       ELSE IF( LQUERY ) THEN
  557:          RETURN
  558:       END IF
  559: *
  560: *     Quick return if possible.
  561: *
  562:       IF( M.EQ.N .OR. M.EQ.0 ) THEN
  563:          IF( WANTP ) THEN
  564:             PL = ONE
  565:             PR = ONE
  566:          END IF
  567:          IF( WANTD ) THEN
  568:             DSCALE = ZERO
  569:             DSUM = ONE
  570:             DO 20 I = 1, N
  571:                CALL ZLASSQ( N, A( 1, I ), 1, DSCALE, DSUM )
  572:                CALL ZLASSQ( N, B( 1, I ), 1, DSCALE, DSUM )
  573:    20       CONTINUE
  574:             DIF( 1 ) = DSCALE*SQRT( DSUM )
  575:             DIF( 2 ) = DIF( 1 )
  576:          END IF
  577:          GO TO 70
  578:       END IF
  579: *
  580: *     Get machine constant
  581: *
  582:       SAFMIN = DLAMCH( 'S' )
  583: *
  584: *     Collect the selected blocks at the top-left corner of (A, B).
  585: *
  586:       KS = 0
  587:       DO 30 K = 1, N
  588:          SWAP = SELECT( K )
  589:          IF( SWAP ) THEN
  590:             KS = KS + 1
  591: *
  592: *           Swap the K-th block to position KS. Compute unitary Q
  593: *           and Z that will swap adjacent diagonal blocks in (A, B).
  594: *
  595:             IF( K.NE.KS )
  596:      $         CALL ZTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
  597:      $                      LDZ, K, KS, IERR )
  598: *
  599:             IF( IERR.GT.0 ) THEN
  600: *
  601: *              Swap is rejected: exit.
  602: *
  603:                INFO = 1
  604:                IF( WANTP ) THEN
  605:                   PL = ZERO
  606:                   PR = ZERO
  607:                END IF
  608:                IF( WANTD ) THEN
  609:                   DIF( 1 ) = ZERO
  610:                   DIF( 2 ) = ZERO
  611:                END IF
  612:                GO TO 70
  613:             END IF
  614:          END IF
  615:    30 CONTINUE
  616:       IF( WANTP ) THEN
  617: *
  618: *        Solve generalized Sylvester equation for R and L:
  619: *                   A11 * R - L * A22 = A12
  620: *                   B11 * R - L * B22 = B12
  621: *
  622:          N1 = M
  623:          N2 = N - M
  624:          I = N1 + 1
  625:          CALL ZLACPY( 'Full', N1, N2, A( 1, I ), LDA, WORK, N1 )
  626:          CALL ZLACPY( 'Full', N1, N2, B( 1, I ), LDB, WORK( N1*N2+1 ),
  627:      $                N1 )
  628:          IJB = 0
  629:          CALL ZTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
  630:      $                N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ), N1,
  631:      $                DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ),
  632:      $                LWORK-2*N1*N2, IWORK, IERR )
  633: *
  634: *        Estimate the reciprocal of norms of "projections" onto
  635: *        left and right eigenspaces
  636: *
  637:          RDSCAL = ZERO
  638:          DSUM = ONE
  639:          CALL ZLASSQ( N1*N2, WORK, 1, RDSCAL, DSUM )
  640:          PL = RDSCAL*SQRT( DSUM )
  641:          IF( PL.EQ.ZERO ) THEN
  642:             PL = ONE
  643:          ELSE
  644:             PL = DSCALE / ( SQRT( DSCALE*DSCALE / PL+PL )*SQRT( PL ) )
  645:          END IF
  646:          RDSCAL = ZERO
  647:          DSUM = ONE
  648:          CALL ZLASSQ( N1*N2, WORK( N1*N2+1 ), 1, RDSCAL, DSUM )
  649:          PR = RDSCAL*SQRT( DSUM )
  650:          IF( PR.EQ.ZERO ) THEN
  651:             PR = ONE
  652:          ELSE
  653:             PR = DSCALE / ( SQRT( DSCALE*DSCALE / PR+PR )*SQRT( PR ) )
  654:          END IF
  655:       END IF
  656:       IF( WANTD ) THEN
  657: *
  658: *        Compute estimates Difu and Difl.
  659: *
  660:          IF( WANTD1 ) THEN
  661:             N1 = M
  662:             N2 = N - M
  663:             I = N1 + 1
  664:             IJB = IDIFJB
  665: *
  666: *           Frobenius norm-based Difu estimate.
  667: *
  668:             CALL ZTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
  669:      $                   N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ),
  670:      $                   N1, DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ),
  671:      $                   LWORK-2*N1*N2, IWORK, IERR )
  672: *
  673: *           Frobenius norm-based Difl estimate.
  674: *
  675:             CALL ZTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA, WORK,
  676:      $                   N2, B( I, I ), LDB, B, LDB, WORK( N1*N2+1 ),
  677:      $                   N2, DSCALE, DIF( 2 ), WORK( N1*N2*2+1 ),
  678:      $                   LWORK-2*N1*N2, IWORK, IERR )
  679:          ELSE
  680: *
  681: *           Compute 1-norm-based estimates of Difu and Difl using
  682: *           reversed communication with ZLACN2. In each step a
  683: *           generalized Sylvester equation or a transposed variant
  684: *           is solved.
  685: *
  686:             KASE = 0
  687:             N1 = M
  688:             N2 = N - M
  689:             I = N1 + 1
  690:             IJB = 0
  691:             MN2 = 2*N1*N2
  692: *
  693: *           1-norm-based estimate of Difu.
  694: *
  695:    40       CONTINUE
  696:             CALL ZLACN2( MN2, WORK( MN2+1 ), WORK, DIF( 1 ), KASE,
  697:      $                   ISAVE )
  698:             IF( KASE.NE.0 ) THEN
  699:                IF( KASE.EQ.1 ) THEN
  700: *
  701: *                 Solve generalized Sylvester equation
  702: *
  703:                   CALL ZTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA,
  704:      $                         WORK, N1, B, LDB, B( I, I ), LDB,
  705:      $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
  706:      $                         WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
  707:      $                         IERR )
  708:                ELSE
  709: *
  710: *                 Solve the transposed variant.
  711: *
  712:                   CALL ZTGSYL( 'C', IJB, N1, N2, A, LDA, A( I, I ), LDA,
  713:      $                         WORK, N1, B, LDB, B( I, I ), LDB,
  714:      $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
  715:      $                         WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
  716:      $                         IERR )
  717:                END IF
  718:                GO TO 40
  719:             END IF
  720:             DIF( 1 ) = DSCALE / DIF( 1 )
  721: *
  722: *           1-norm-based estimate of Difl.
  723: *
  724:    50       CONTINUE
  725:             CALL ZLACN2( MN2, WORK( MN2+1 ), WORK, DIF( 2 ), KASE,
  726:      $                   ISAVE )
  727:             IF( KASE.NE.0 ) THEN
  728:                IF( KASE.EQ.1 ) THEN
  729: *
  730: *                 Solve generalized Sylvester equation
  731: *
  732:                   CALL ZTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA,
  733:      $                         WORK, N2, B( I, I ), LDB, B, LDB,
  734:      $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
  735:      $                         WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
  736:      $                         IERR )
  737:                ELSE
  738: *
  739: *                 Solve the transposed variant.
  740: *
  741:                   CALL ZTGSYL( 'C', IJB, N2, N1, A( I, I ), LDA, A, LDA,
  742:      $                         WORK, N2, B, LDB, B( I, I ), LDB,
  743:      $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
  744:      $                         WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
  745:      $                         IERR )
  746:                END IF
  747:                GO TO 50
  748:             END IF
  749:             DIF( 2 ) = DSCALE / DIF( 2 )
  750:          END IF
  751:       END IF
  752: *
  753: *     If B(K,K) is complex, make it real and positive (normalization
  754: *     of the generalized Schur form) and Store the generalized
  755: *     eigenvalues of reordered pair (A, B)
  756: *
  757:       DO 60 K = 1, N
  758:          DSCALE = ABS( B( K, K ) )
  759:          IF( DSCALE.GT.SAFMIN ) THEN
  760:             TEMP1 = DCONJG( B( K, K ) / DSCALE )
  761:             TEMP2 = B( K, K ) / DSCALE
  762:             B( K, K ) = DSCALE
  763:             CALL ZSCAL( N-K, TEMP1, B( K, K+1 ), LDB )
  764:             CALL ZSCAL( N-K+1, TEMP1, A( K, K ), LDA )
  765:             IF( WANTQ )
  766:      $         CALL ZSCAL( N, TEMP2, Q( 1, K ), 1 )
  767:          ELSE
  768:             B( K, K ) = DCMPLX( ZERO, ZERO )
  769:          END IF
  770: *
  771:          ALPHA( K ) = A( K, K )
  772:          BETA( K ) = B( K, K )
  773: *
  774:    60 CONTINUE
  775: *
  776:    70 CONTINUE
  777: *
  778:       WORK( 1 ) = LWMIN
  779:       IWORK( 1 ) = LIWMIN
  780: *
  781:       RETURN
  782: *
  783: *     End of ZTGSEN
  784: *
  785:       END

CVSweb interface <joel.bertrand@systella.fr>