Annotation of rpl/lapack/lapack/ztgsen.f, revision 1.9

1.1       bertrand    1:       SUBROUTINE ZTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
                      2:      $                   ALPHA, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF,
                      3:      $                   WORK, LWORK, IWORK, LIWORK, INFO )
                      4: *
1.9     ! bertrand    5: *  -- LAPACK routine (version 3.3.1) --
1.1       bertrand    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand    8: *  -- April 2011                                                      --
1.1       bertrand    9: *
                     10: *     Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH.
                     11: *
                     12: *     .. Scalar Arguments ..
                     13:       LOGICAL            WANTQ, WANTZ
                     14:       INTEGER            IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
                     15:      $                   M, N
                     16:       DOUBLE PRECISION   PL, PR
                     17: *     ..
                     18: *     .. Array Arguments ..
                     19:       LOGICAL            SELECT( * )
                     20:       INTEGER            IWORK( * )
                     21:       DOUBLE PRECISION   DIF( * )
                     22:       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
                     23:      $                   BETA( * ), Q( LDQ, * ), WORK( * ), Z( LDZ, * )
                     24: *     ..
                     25: *
                     26: *  Purpose
                     27: *  =======
                     28: *
                     29: *  ZTGSEN reorders the generalized Schur decomposition of a complex
                     30: *  matrix pair (A, B) (in terms of an unitary equivalence trans-
1.9     ! bertrand   31: *  formation Q**H * (A, B) * Z), so that a selected cluster of eigenvalues
1.1       bertrand   32: *  appears in the leading diagonal blocks of the pair (A,B). The leading
                     33: *  columns of Q and Z form unitary bases of the corresponding left and
                     34: *  right eigenspaces (deflating subspaces). (A, B) must be in
                     35: *  generalized Schur canonical form, that is, A and B are both upper
                     36: *  triangular.
                     37: *
                     38: *  ZTGSEN also computes the generalized eigenvalues
                     39: *
                     40: *           w(j)= ALPHA(j) / BETA(j)
                     41: *
                     42: *  of the reordered matrix pair (A, B).
                     43: *
                     44: *  Optionally, the routine computes estimates of reciprocal condition
                     45: *  numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
                     46: *  (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
                     47: *  between the matrix pairs (A11, B11) and (A22,B22) that correspond to
                     48: *  the selected cluster and the eigenvalues outside the cluster, resp.,
                     49: *  and norms of "projections" onto left and right eigenspaces w.r.t.
                     50: *  the selected cluster in the (1,1)-block.
                     51: *
                     52: *
                     53: *  Arguments
                     54: *  =========
                     55: *
                     56: *  IJOB    (input) integer
                     57: *          Specifies whether condition numbers are required for the
                     58: *          cluster of eigenvalues (PL and PR) or the deflating subspaces
                     59: *          (Difu and Difl):
                     60: *           =0: Only reorder w.r.t. SELECT. No extras.
                     61: *           =1: Reciprocal of norms of "projections" onto left and right
                     62: *               eigenspaces w.r.t. the selected cluster (PL and PR).
                     63: *           =2: Upper bounds on Difu and Difl. F-norm-based estimate
                     64: *               (DIF(1:2)).
                     65: *           =3: Estimate of Difu and Difl. 1-norm-based estimate
                     66: *               (DIF(1:2)).
                     67: *               About 5 times as expensive as IJOB = 2.
                     68: *           =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
                     69: *               version to get it all.
                     70: *           =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)
                     71: *
                     72: *  WANTQ   (input) LOGICAL
                     73: *          .TRUE. : update the left transformation matrix Q;
                     74: *          .FALSE.: do not update Q.
                     75: *
                     76: *  WANTZ   (input) LOGICAL
                     77: *          .TRUE. : update the right transformation matrix Z;
                     78: *          .FALSE.: do not update Z.
                     79: *
                     80: *  SELECT  (input) LOGICAL array, dimension (N)
                     81: *          SELECT specifies the eigenvalues in the selected cluster. To
                     82: *          select an eigenvalue w(j), SELECT(j) must be set to
                     83: *          .TRUE..
                     84: *
                     85: *  N       (input) INTEGER
                     86: *          The order of the matrices A and B. N >= 0.
                     87: *
                     88: *  A       (input/output) COMPLEX*16 array, dimension(LDA,N)
                     89: *          On entry, the upper triangular matrix A, in generalized
                     90: *          Schur canonical form.
                     91: *          On exit, A is overwritten by the reordered matrix A.
                     92: *
                     93: *  LDA     (input) INTEGER
                     94: *          The leading dimension of the array A. LDA >= max(1,N).
                     95: *
                     96: *  B       (input/output) COMPLEX*16 array, dimension(LDB,N)
                     97: *          On entry, the upper triangular matrix B, in generalized
                     98: *          Schur canonical form.
                     99: *          On exit, B is overwritten by the reordered matrix B.
                    100: *
                    101: *  LDB     (input) INTEGER
                    102: *          The leading dimension of the array B. LDB >= max(1,N).
                    103: *
                    104: *  ALPHA   (output) COMPLEX*16 array, dimension (N)
                    105: *  BETA    (output) COMPLEX*16 array, dimension (N)
                    106: *          The diagonal elements of A and B, respectively,
                    107: *          when the pair (A,B) has been reduced to generalized Schur
                    108: *          form.  ALPHA(i)/BETA(i) i=1,...,N are the generalized
                    109: *          eigenvalues.
                    110: *
                    111: *  Q       (input/output) COMPLEX*16 array, dimension (LDQ,N)
                    112: *          On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
                    113: *          On exit, Q has been postmultiplied by the left unitary
                    114: *          transformation matrix which reorder (A, B); The leading M
                    115: *          columns of Q form orthonormal bases for the specified pair of
                    116: *          left eigenspaces (deflating subspaces).
                    117: *          If WANTQ = .FALSE., Q is not referenced.
                    118: *
                    119: *  LDQ     (input) INTEGER
                    120: *          The leading dimension of the array Q. LDQ >= 1.
                    121: *          If WANTQ = .TRUE., LDQ >= N.
                    122: *
                    123: *  Z       (input/output) COMPLEX*16 array, dimension (LDZ,N)
                    124: *          On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
                    125: *          On exit, Z has been postmultiplied by the left unitary
                    126: *          transformation matrix which reorder (A, B); The leading M
                    127: *          columns of Z form orthonormal bases for the specified pair of
                    128: *          left eigenspaces (deflating subspaces).
                    129: *          If WANTZ = .FALSE., Z is not referenced.
                    130: *
                    131: *  LDZ     (input) INTEGER
                    132: *          The leading dimension of the array Z. LDZ >= 1.
                    133: *          If WANTZ = .TRUE., LDZ >= N.
                    134: *
                    135: *  M       (output) INTEGER
                    136: *          The dimension of the specified pair of left and right
                    137: *          eigenspaces, (deflating subspaces) 0 <= M <= N.
                    138: *
                    139: *  PL      (output) DOUBLE PRECISION
                    140: *  PR      (output) DOUBLE PRECISION
                    141: *          If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
                    142: *          reciprocal  of the norm of "projections" onto left and right
                    143: *          eigenspace with respect to the selected cluster.
                    144: *          0 < PL, PR <= 1.
                    145: *          If M = 0 or M = N, PL = PR  = 1.
                    146: *          If IJOB = 0, 2 or 3 PL, PR are not referenced.
                    147: *
                    148: *  DIF     (output) DOUBLE PRECISION array, dimension (2).
                    149: *          If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
                    150: *          If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
                    151: *          Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
                    152: *          estimates of Difu and Difl, computed using reversed
                    153: *          communication with ZLACN2.
                    154: *          If M = 0 or N, DIF(1:2) = F-norm([A, B]).
                    155: *          If IJOB = 0 or 1, DIF is not referenced.
                    156: *
                    157: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
1.5       bertrand  158: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
1.1       bertrand  159: *
                    160: *  LWORK   (input) INTEGER
                    161: *          The dimension of the array WORK. LWORK >=  1
                    162: *          If IJOB = 1, 2 or 4, LWORK >=  2*M*(N-M)
                    163: *          If IJOB = 3 or 5, LWORK >=  4*M*(N-M)
                    164: *
                    165: *          If LWORK = -1, then a workspace query is assumed; the routine
                    166: *          only calculates the optimal size of the WORK array, returns
                    167: *          this value as the first entry of the WORK array, and no error
                    168: *          message related to LWORK is issued by XERBLA.
                    169: *
                    170: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
1.5       bertrand  171: *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
1.1       bertrand  172: *
                    173: *  LIWORK  (input) INTEGER
                    174: *          The dimension of the array IWORK. LIWORK >= 1.
                    175: *          If IJOB = 1, 2 or 4, LIWORK >=  N+2;
                    176: *          If IJOB = 3 or 5, LIWORK >= MAX(N+2, 2*M*(N-M));
                    177: *
                    178: *          If LIWORK = -1, then a workspace query is assumed; the
                    179: *          routine only calculates the optimal size of the IWORK array,
                    180: *          returns this value as the first entry of the IWORK array, and
                    181: *          no error message related to LIWORK is issued by XERBLA.
                    182: *
                    183: *  INFO    (output) INTEGER
                    184: *            =0: Successful exit.
                    185: *            <0: If INFO = -i, the i-th argument had an illegal value.
                    186: *            =1: Reordering of (A, B) failed because the transformed
                    187: *                matrix pair (A, B) would be too far from generalized
                    188: *                Schur form; the problem is very ill-conditioned.
                    189: *                (A, B) may have been partially reordered.
                    190: *                If requested, 0 is returned in DIF(*), PL and PR.
                    191: *
                    192: *
                    193: *  Further Details
                    194: *  ===============
                    195: *
                    196: *  ZTGSEN first collects the selected eigenvalues by computing unitary
                    197: *  U and W that move them to the top left corner of (A, B). In other
                    198: *  words, the selected eigenvalues are the eigenvalues of (A11, B11) in
                    199: *
1.9     ! bertrand  200: *              U**H*(A, B)*W = (A11 A12) (B11 B12) n1
1.1       bertrand  201: *                              ( 0  A22),( 0  B22) n2
                    202: *                                n1  n2    n1  n2
                    203: *
1.9     ! bertrand  204: *  where N = n1+n2 and U**H means the conjugate transpose of U. The first
1.1       bertrand  205: *  n1 columns of U and W span the specified pair of left and right
                    206: *  eigenspaces (deflating subspaces) of (A, B).
                    207: *
                    208: *  If (A, B) has been obtained from the generalized real Schur
1.9     ! bertrand  209: *  decomposition of a matrix pair (C, D) = Q*(A, B)*Z**H, then the
1.1       bertrand  210: *  reordered generalized Schur form of (C, D) is given by
                    211: *
1.9     ! bertrand  212: *           (C, D) = (Q*U)*(U**H *(A, B)*W)*(Z*W)**H,
1.1       bertrand  213: *
                    214: *  and the first n1 columns of Q*U and Z*W span the corresponding
                    215: *  deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
                    216: *
                    217: *  Note that if the selected eigenvalue is sufficiently ill-conditioned,
                    218: *  then its value may differ significantly from its value before
                    219: *  reordering.
                    220: *
                    221: *  The reciprocal condition numbers of the left and right eigenspaces
                    222: *  spanned by the first n1 columns of U and W (or Q*U and Z*W) may
                    223: *  be returned in DIF(1:2), corresponding to Difu and Difl, resp.
                    224: *
                    225: *  The Difu and Difl are defined as:
                    226: *
                    227: *       Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
                    228: *  and
                    229: *       Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
                    230: *
                    231: *  where sigma-min(Zu) is the smallest singular value of the
                    232: *  (2*n1*n2)-by-(2*n1*n2) matrix
                    233: *
1.9     ! bertrand  234: *       Zu = [ kron(In2, A11)  -kron(A22**H, In1) ]
        !           235: *            [ kron(In2, B11)  -kron(B22**H, In1) ].
1.1       bertrand  236: *
1.9     ! bertrand  237: *  Here, Inx is the identity matrix of size nx and A22**H is the
        !           238: *  conjugate transpose of A22. kron(X, Y) is the Kronecker product between
1.1       bertrand  239: *  the matrices X and Y.
                    240: *
                    241: *  When DIF(2) is small, small changes in (A, B) can cause large changes
                    242: *  in the deflating subspace. An approximate (asymptotic) bound on the
                    243: *  maximum angular error in the computed deflating subspaces is
                    244: *
                    245: *       EPS * norm((A, B)) / DIF(2),
                    246: *
                    247: *  where EPS is the machine precision.
                    248: *
                    249: *  The reciprocal norm of the projectors on the left and right
                    250: *  eigenspaces associated with (A11, B11) may be returned in PL and PR.
                    251: *  They are computed as follows. First we compute L and R so that
                    252: *  P*(A, B)*Q is block diagonal, where
                    253: *
                    254: *       P = ( I -L ) n1           Q = ( I R ) n1
                    255: *           ( 0  I ) n2    and        ( 0 I ) n2
                    256: *             n1 n2                    n1 n2
                    257: *
                    258: *  and (L, R) is the solution to the generalized Sylvester equation
                    259: *
                    260: *       A11*R - L*A22 = -A12
                    261: *       B11*R - L*B22 = -B12
                    262: *
                    263: *  Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
                    264: *  An approximate (asymptotic) bound on the average absolute error of
                    265: *  the selected eigenvalues is
                    266: *
                    267: *       EPS * norm((A, B)) / PL.
                    268: *
                    269: *  There are also global error bounds which valid for perturbations up
                    270: *  to a certain restriction:  A lower bound (x) on the smallest
                    271: *  F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
                    272: *  coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
                    273: *  (i.e. (A + E, B + F), is
                    274: *
                    275: *   x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
                    276: *
                    277: *  An approximate bound on x can be computed from DIF(1:2), PL and PR.
                    278: *
                    279: *  If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
                    280: *  (L', R') and unperturbed (L, R) left and right deflating subspaces
                    281: *  associated with the selected cluster in the (1,1)-blocks can be
                    282: *  bounded as
                    283: *
                    284: *   max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
                    285: *   max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
                    286: *
                    287: *  See LAPACK User's Guide section 4.11 or the following references
                    288: *  for more information.
                    289: *
                    290: *  Note that if the default method for computing the Frobenius-norm-
                    291: *  based estimate DIF is not wanted (see ZLATDF), then the parameter
                    292: *  IDIFJB (see below) should be changed from 3 to 4 (routine ZLATDF
                    293: *  (IJOB = 2 will be used)). See ZTGSYL for more details.
                    294: *
                    295: *  Based on contributions by
                    296: *     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
                    297: *     Umea University, S-901 87 Umea, Sweden.
                    298: *
                    299: *  References
                    300: *  ==========
                    301: *
                    302: *  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
                    303: *      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
                    304: *      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
                    305: *      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
                    306: *
                    307: *  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
                    308: *      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
                    309: *      Estimation: Theory, Algorithms and Software, Report
                    310: *      UMINF - 94.04, Department of Computing Science, Umea University,
                    311: *      S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.
                    312: *      To appear in Numerical Algorithms, 1996.
                    313: *
                    314: *  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
                    315: *      for Solving the Generalized Sylvester Equation and Estimating the
                    316: *      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
                    317: *      Department of Computing Science, Umea University, S-901 87 Umea,
                    318: *      Sweden, December 1993, Revised April 1994, Also as LAPACK working
                    319: *      Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
                    320: *      1996.
                    321: *
                    322: *  =====================================================================
                    323: *
                    324: *     .. Parameters ..
                    325:       INTEGER            IDIFJB
                    326:       PARAMETER          ( IDIFJB = 3 )
                    327:       DOUBLE PRECISION   ZERO, ONE
                    328:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    329: *     ..
                    330: *     .. Local Scalars ..
                    331:       LOGICAL            LQUERY, SWAP, WANTD, WANTD1, WANTD2, WANTP
                    332:       INTEGER            I, IERR, IJB, K, KASE, KS, LIWMIN, LWMIN, MN2,
                    333:      $                   N1, N2
                    334:       DOUBLE PRECISION   DSCALE, DSUM, RDSCAL, SAFMIN
                    335:       COMPLEX*16         TEMP1, TEMP2
                    336: *     ..
                    337: *     .. Local Arrays ..
                    338:       INTEGER            ISAVE( 3 )
                    339: *     ..
                    340: *     .. External Subroutines ..
                    341:       EXTERNAL           XERBLA, ZLACN2, ZLACPY, ZLASSQ, ZSCAL, ZTGEXC,
                    342:      $                   ZTGSYL
                    343: *     ..
                    344: *     .. Intrinsic Functions ..
                    345:       INTRINSIC          ABS, DCMPLX, DCONJG, MAX, SQRT
                    346: *     ..
                    347: *     .. External Functions ..
                    348:       DOUBLE PRECISION   DLAMCH
                    349:       EXTERNAL           DLAMCH
                    350: *     ..
                    351: *     .. Executable Statements ..
                    352: *
                    353: *     Decode and test the input parameters
                    354: *
                    355:       INFO = 0
                    356:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    357: *
                    358:       IF( IJOB.LT.0 .OR. IJOB.GT.5 ) THEN
                    359:          INFO = -1
                    360:       ELSE IF( N.LT.0 ) THEN
                    361:          INFO = -5
                    362:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    363:          INFO = -7
                    364:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    365:          INFO = -9
                    366:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
                    367:          INFO = -13
                    368:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    369:          INFO = -15
                    370:       END IF
                    371: *
                    372:       IF( INFO.NE.0 ) THEN
                    373:          CALL XERBLA( 'ZTGSEN', -INFO )
                    374:          RETURN
                    375:       END IF
                    376: *
                    377:       IERR = 0
                    378: *
                    379:       WANTP = IJOB.EQ.1 .OR. IJOB.GE.4
                    380:       WANTD1 = IJOB.EQ.2 .OR. IJOB.EQ.4
                    381:       WANTD2 = IJOB.EQ.3 .OR. IJOB.EQ.5
                    382:       WANTD = WANTD1 .OR. WANTD2
                    383: *
                    384: *     Set M to the dimension of the specified pair of deflating
                    385: *     subspaces.
                    386: *
                    387:       M = 0
                    388:       DO 10 K = 1, N
                    389:          ALPHA( K ) = A( K, K )
                    390:          BETA( K ) = B( K, K )
                    391:          IF( K.LT.N ) THEN
                    392:             IF( SELECT( K ) )
                    393:      $         M = M + 1
                    394:          ELSE
                    395:             IF( SELECT( N ) )
                    396:      $         M = M + 1
                    397:          END IF
                    398:    10 CONTINUE
                    399: *
                    400:       IF( IJOB.EQ.1 .OR. IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN
                    401:          LWMIN = MAX( 1, 2*M*( N-M ) )
                    402:          LIWMIN = MAX( 1, N+2 )
                    403:       ELSE IF( IJOB.EQ.3 .OR. IJOB.EQ.5 ) THEN
                    404:          LWMIN = MAX( 1, 4*M*( N-M ) )
                    405:          LIWMIN = MAX( 1, 2*M*( N-M ), N+2 )
                    406:       ELSE
                    407:          LWMIN = 1
                    408:          LIWMIN = 1
                    409:       END IF
                    410: *
                    411:       WORK( 1 ) = LWMIN
                    412:       IWORK( 1 ) = LIWMIN
                    413: *
                    414:       IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    415:          INFO = -21
                    416:       ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    417:          INFO = -23
                    418:       END IF
                    419: *
                    420:       IF( INFO.NE.0 ) THEN
                    421:          CALL XERBLA( 'ZTGSEN', -INFO )
                    422:          RETURN
                    423:       ELSE IF( LQUERY ) THEN
                    424:          RETURN
                    425:       END IF
                    426: *
                    427: *     Quick return if possible.
                    428: *
                    429:       IF( M.EQ.N .OR. M.EQ.0 ) THEN
                    430:          IF( WANTP ) THEN
                    431:             PL = ONE
                    432:             PR = ONE
                    433:          END IF
                    434:          IF( WANTD ) THEN
                    435:             DSCALE = ZERO
                    436:             DSUM = ONE
                    437:             DO 20 I = 1, N
                    438:                CALL ZLASSQ( N, A( 1, I ), 1, DSCALE, DSUM )
                    439:                CALL ZLASSQ( N, B( 1, I ), 1, DSCALE, DSUM )
                    440:    20       CONTINUE
                    441:             DIF( 1 ) = DSCALE*SQRT( DSUM )
                    442:             DIF( 2 ) = DIF( 1 )
                    443:          END IF
                    444:          GO TO 70
                    445:       END IF
                    446: *
                    447: *     Get machine constant
                    448: *
                    449:       SAFMIN = DLAMCH( 'S' )
                    450: *
                    451: *     Collect the selected blocks at the top-left corner of (A, B).
                    452: *
                    453:       KS = 0
                    454:       DO 30 K = 1, N
                    455:          SWAP = SELECT( K )
                    456:          IF( SWAP ) THEN
                    457:             KS = KS + 1
                    458: *
                    459: *           Swap the K-th block to position KS. Compute unitary Q
                    460: *           and Z that will swap adjacent diagonal blocks in (A, B).
                    461: *
                    462:             IF( K.NE.KS )
                    463:      $         CALL ZTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
                    464:      $                      LDZ, K, KS, IERR )
                    465: *
                    466:             IF( IERR.GT.0 ) THEN
                    467: *
                    468: *              Swap is rejected: exit.
                    469: *
                    470:                INFO = 1
                    471:                IF( WANTP ) THEN
                    472:                   PL = ZERO
                    473:                   PR = ZERO
                    474:                END IF
                    475:                IF( WANTD ) THEN
                    476:                   DIF( 1 ) = ZERO
                    477:                   DIF( 2 ) = ZERO
                    478:                END IF
                    479:                GO TO 70
                    480:             END IF
                    481:          END IF
                    482:    30 CONTINUE
                    483:       IF( WANTP ) THEN
                    484: *
                    485: *        Solve generalized Sylvester equation for R and L:
                    486: *                   A11 * R - L * A22 = A12
                    487: *                   B11 * R - L * B22 = B12
                    488: *
                    489:          N1 = M
                    490:          N2 = N - M
                    491:          I = N1 + 1
                    492:          CALL ZLACPY( 'Full', N1, N2, A( 1, I ), LDA, WORK, N1 )
                    493:          CALL ZLACPY( 'Full', N1, N2, B( 1, I ), LDB, WORK( N1*N2+1 ),
                    494:      $                N1 )
                    495:          IJB = 0
                    496:          CALL ZTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
                    497:      $                N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ), N1,
                    498:      $                DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ),
                    499:      $                LWORK-2*N1*N2, IWORK, IERR )
                    500: *
                    501: *        Estimate the reciprocal of norms of "projections" onto
                    502: *        left and right eigenspaces
                    503: *
                    504:          RDSCAL = ZERO
                    505:          DSUM = ONE
                    506:          CALL ZLASSQ( N1*N2, WORK, 1, RDSCAL, DSUM )
                    507:          PL = RDSCAL*SQRT( DSUM )
                    508:          IF( PL.EQ.ZERO ) THEN
                    509:             PL = ONE
                    510:          ELSE
                    511:             PL = DSCALE / ( SQRT( DSCALE*DSCALE / PL+PL )*SQRT( PL ) )
                    512:          END IF
                    513:          RDSCAL = ZERO
                    514:          DSUM = ONE
                    515:          CALL ZLASSQ( N1*N2, WORK( N1*N2+1 ), 1, RDSCAL, DSUM )
                    516:          PR = RDSCAL*SQRT( DSUM )
                    517:          IF( PR.EQ.ZERO ) THEN
                    518:             PR = ONE
                    519:          ELSE
                    520:             PR = DSCALE / ( SQRT( DSCALE*DSCALE / PR+PR )*SQRT( PR ) )
                    521:          END IF
                    522:       END IF
                    523:       IF( WANTD ) THEN
                    524: *
                    525: *        Compute estimates Difu and Difl.
                    526: *
                    527:          IF( WANTD1 ) THEN
                    528:             N1 = M
                    529:             N2 = N - M
                    530:             I = N1 + 1
                    531:             IJB = IDIFJB
                    532: *
                    533: *           Frobenius norm-based Difu estimate.
                    534: *
                    535:             CALL ZTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
                    536:      $                   N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ),
                    537:      $                   N1, DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ),
                    538:      $                   LWORK-2*N1*N2, IWORK, IERR )
                    539: *
                    540: *           Frobenius norm-based Difl estimate.
                    541: *
                    542:             CALL ZTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA, WORK,
                    543:      $                   N2, B( I, I ), LDB, B, LDB, WORK( N1*N2+1 ),
                    544:      $                   N2, DSCALE, DIF( 2 ), WORK( N1*N2*2+1 ),
                    545:      $                   LWORK-2*N1*N2, IWORK, IERR )
                    546:          ELSE
                    547: *
                    548: *           Compute 1-norm-based estimates of Difu and Difl using
                    549: *           reversed communication with ZLACN2. In each step a
                    550: *           generalized Sylvester equation or a transposed variant
                    551: *           is solved.
                    552: *
                    553:             KASE = 0
                    554:             N1 = M
                    555:             N2 = N - M
                    556:             I = N1 + 1
                    557:             IJB = 0
                    558:             MN2 = 2*N1*N2
                    559: *
                    560: *           1-norm-based estimate of Difu.
                    561: *
                    562:    40       CONTINUE
                    563:             CALL ZLACN2( MN2, WORK( MN2+1 ), WORK, DIF( 1 ), KASE,
                    564:      $                   ISAVE )
                    565:             IF( KASE.NE.0 ) THEN
                    566:                IF( KASE.EQ.1 ) THEN
                    567: *
                    568: *                 Solve generalized Sylvester equation
                    569: *
                    570:                   CALL ZTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA,
                    571:      $                         WORK, N1, B, LDB, B( I, I ), LDB,
                    572:      $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
                    573:      $                         WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
                    574:      $                         IERR )
                    575:                ELSE
                    576: *
                    577: *                 Solve the transposed variant.
                    578: *
                    579:                   CALL ZTGSYL( 'C', IJB, N1, N2, A, LDA, A( I, I ), LDA,
                    580:      $                         WORK, N1, B, LDB, B( I, I ), LDB,
                    581:      $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
                    582:      $                         WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
                    583:      $                         IERR )
                    584:                END IF
                    585:                GO TO 40
                    586:             END IF
                    587:             DIF( 1 ) = DSCALE / DIF( 1 )
                    588: *
                    589: *           1-norm-based estimate of Difl.
                    590: *
                    591:    50       CONTINUE
                    592:             CALL ZLACN2( MN2, WORK( MN2+1 ), WORK, DIF( 2 ), KASE,
                    593:      $                   ISAVE )
                    594:             IF( KASE.NE.0 ) THEN
                    595:                IF( KASE.EQ.1 ) THEN
                    596: *
                    597: *                 Solve generalized Sylvester equation
                    598: *
                    599:                   CALL ZTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA,
                    600:      $                         WORK, N2, B( I, I ), LDB, B, LDB,
                    601:      $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
                    602:      $                         WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
                    603:      $                         IERR )
                    604:                ELSE
                    605: *
                    606: *                 Solve the transposed variant.
                    607: *
                    608:                   CALL ZTGSYL( 'C', IJB, N2, N1, A( I, I ), LDA, A, LDA,
                    609:      $                         WORK, N2, B, LDB, B( I, I ), LDB,
                    610:      $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
                    611:      $                         WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
                    612:      $                         IERR )
                    613:                END IF
                    614:                GO TO 50
                    615:             END IF
                    616:             DIF( 2 ) = DSCALE / DIF( 2 )
                    617:          END IF
                    618:       END IF
                    619: *
                    620: *     If B(K,K) is complex, make it real and positive (normalization
                    621: *     of the generalized Schur form) and Store the generalized
                    622: *     eigenvalues of reordered pair (A, B)
                    623: *
                    624:       DO 60 K = 1, N
                    625:          DSCALE = ABS( B( K, K ) )
                    626:          IF( DSCALE.GT.SAFMIN ) THEN
                    627:             TEMP1 = DCONJG( B( K, K ) / DSCALE )
                    628:             TEMP2 = B( K, K ) / DSCALE
                    629:             B( K, K ) = DSCALE
                    630:             CALL ZSCAL( N-K, TEMP1, B( K, K+1 ), LDB )
                    631:             CALL ZSCAL( N-K+1, TEMP1, A( K, K ), LDA )
                    632:             IF( WANTQ )
                    633:      $         CALL ZSCAL( N, TEMP2, Q( 1, K ), 1 )
                    634:          ELSE
                    635:             B( K, K ) = DCMPLX( ZERO, ZERO )
                    636:          END IF
                    637: *
                    638:          ALPHA( K ) = A( K, K )
                    639:          BETA( K ) = B( K, K )
                    640: *
                    641:    60 CONTINUE
                    642: *
                    643:    70 CONTINUE
                    644: *
                    645:       WORK( 1 ) = LWMIN
                    646:       IWORK( 1 ) = LIWMIN
                    647: *
                    648:       RETURN
                    649: *
                    650: *     End of ZTGSEN
                    651: *
                    652:       END

CVSweb interface <joel.bertrand@systella.fr>