Annotation of rpl/lapack/lapack/ztgsen.f, revision 1.4

1.1       bertrand    1:       SUBROUTINE ZTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
                      2:      $                   ALPHA, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF,
                      3:      $                   WORK, LWORK, IWORK, LIWORK, INFO )
                      4: *
                      5: *  -- LAPACK routine (version 3.2) --
                      6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      8: *     January 2007
                      9: *
                     10: *     Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH.
                     11: *
                     12: *     .. Scalar Arguments ..
                     13:       LOGICAL            WANTQ, WANTZ
                     14:       INTEGER            IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
                     15:      $                   M, N
                     16:       DOUBLE PRECISION   PL, PR
                     17: *     ..
                     18: *     .. Array Arguments ..
                     19:       LOGICAL            SELECT( * )
                     20:       INTEGER            IWORK( * )
                     21:       DOUBLE PRECISION   DIF( * )
                     22:       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
                     23:      $                   BETA( * ), Q( LDQ, * ), WORK( * ), Z( LDZ, * )
                     24: *     ..
                     25: *
                     26: *  Purpose
                     27: *  =======
                     28: *
                     29: *  ZTGSEN reorders the generalized Schur decomposition of a complex
                     30: *  matrix pair (A, B) (in terms of an unitary equivalence trans-
                     31: *  formation Q' * (A, B) * Z), so that a selected cluster of eigenvalues
                     32: *  appears in the leading diagonal blocks of the pair (A,B). The leading
                     33: *  columns of Q and Z form unitary bases of the corresponding left and
                     34: *  right eigenspaces (deflating subspaces). (A, B) must be in
                     35: *  generalized Schur canonical form, that is, A and B are both upper
                     36: *  triangular.
                     37: *
                     38: *  ZTGSEN also computes the generalized eigenvalues
                     39: *
                     40: *           w(j)= ALPHA(j) / BETA(j)
                     41: *
                     42: *  of the reordered matrix pair (A, B).
                     43: *
                     44: *  Optionally, the routine computes estimates of reciprocal condition
                     45: *  numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
                     46: *  (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
                     47: *  between the matrix pairs (A11, B11) and (A22,B22) that correspond to
                     48: *  the selected cluster and the eigenvalues outside the cluster, resp.,
                     49: *  and norms of "projections" onto left and right eigenspaces w.r.t.
                     50: *  the selected cluster in the (1,1)-block.
                     51: *
                     52: *
                     53: *  Arguments
                     54: *  =========
                     55: *
                     56: *  IJOB    (input) integer
                     57: *          Specifies whether condition numbers are required for the
                     58: *          cluster of eigenvalues (PL and PR) or the deflating subspaces
                     59: *          (Difu and Difl):
                     60: *           =0: Only reorder w.r.t. SELECT. No extras.
                     61: *           =1: Reciprocal of norms of "projections" onto left and right
                     62: *               eigenspaces w.r.t. the selected cluster (PL and PR).
                     63: *           =2: Upper bounds on Difu and Difl. F-norm-based estimate
                     64: *               (DIF(1:2)).
                     65: *           =3: Estimate of Difu and Difl. 1-norm-based estimate
                     66: *               (DIF(1:2)).
                     67: *               About 5 times as expensive as IJOB = 2.
                     68: *           =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
                     69: *               version to get it all.
                     70: *           =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)
                     71: *
                     72: *  WANTQ   (input) LOGICAL
                     73: *          .TRUE. : update the left transformation matrix Q;
                     74: *          .FALSE.: do not update Q.
                     75: *
                     76: *  WANTZ   (input) LOGICAL
                     77: *          .TRUE. : update the right transformation matrix Z;
                     78: *          .FALSE.: do not update Z.
                     79: *
                     80: *  SELECT  (input) LOGICAL array, dimension (N)
                     81: *          SELECT specifies the eigenvalues in the selected cluster. To
                     82: *          select an eigenvalue w(j), SELECT(j) must be set to
                     83: *          .TRUE..
                     84: *
                     85: *  N       (input) INTEGER
                     86: *          The order of the matrices A and B. N >= 0.
                     87: *
                     88: *  A       (input/output) COMPLEX*16 array, dimension(LDA,N)
                     89: *          On entry, the upper triangular matrix A, in generalized
                     90: *          Schur canonical form.
                     91: *          On exit, A is overwritten by the reordered matrix A.
                     92: *
                     93: *  LDA     (input) INTEGER
                     94: *          The leading dimension of the array A. LDA >= max(1,N).
                     95: *
                     96: *  B       (input/output) COMPLEX*16 array, dimension(LDB,N)
                     97: *          On entry, the upper triangular matrix B, in generalized
                     98: *          Schur canonical form.
                     99: *          On exit, B is overwritten by the reordered matrix B.
                    100: *
                    101: *  LDB     (input) INTEGER
                    102: *          The leading dimension of the array B. LDB >= max(1,N).
                    103: *
                    104: *  ALPHA   (output) COMPLEX*16 array, dimension (N)
                    105: *  BETA    (output) COMPLEX*16 array, dimension (N)
                    106: *          The diagonal elements of A and B, respectively,
                    107: *          when the pair (A,B) has been reduced to generalized Schur
                    108: *          form.  ALPHA(i)/BETA(i) i=1,...,N are the generalized
                    109: *          eigenvalues.
                    110: *
                    111: *  Q       (input/output) COMPLEX*16 array, dimension (LDQ,N)
                    112: *          On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
                    113: *          On exit, Q has been postmultiplied by the left unitary
                    114: *          transformation matrix which reorder (A, B); The leading M
                    115: *          columns of Q form orthonormal bases for the specified pair of
                    116: *          left eigenspaces (deflating subspaces).
                    117: *          If WANTQ = .FALSE., Q is not referenced.
                    118: *
                    119: *  LDQ     (input) INTEGER
                    120: *          The leading dimension of the array Q. LDQ >= 1.
                    121: *          If WANTQ = .TRUE., LDQ >= N.
                    122: *
                    123: *  Z       (input/output) COMPLEX*16 array, dimension (LDZ,N)
                    124: *          On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
                    125: *          On exit, Z has been postmultiplied by the left unitary
                    126: *          transformation matrix which reorder (A, B); The leading M
                    127: *          columns of Z form orthonormal bases for the specified pair of
                    128: *          left eigenspaces (deflating subspaces).
                    129: *          If WANTZ = .FALSE., Z is not referenced.
                    130: *
                    131: *  LDZ     (input) INTEGER
                    132: *          The leading dimension of the array Z. LDZ >= 1.
                    133: *          If WANTZ = .TRUE., LDZ >= N.
                    134: *
                    135: *  M       (output) INTEGER
                    136: *          The dimension of the specified pair of left and right
                    137: *          eigenspaces, (deflating subspaces) 0 <= M <= N.
                    138: *
                    139: *  PL      (output) DOUBLE PRECISION
                    140: *  PR      (output) DOUBLE PRECISION
                    141: *          If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
                    142: *          reciprocal  of the norm of "projections" onto left and right
                    143: *          eigenspace with respect to the selected cluster.
                    144: *          0 < PL, PR <= 1.
                    145: *          If M = 0 or M = N, PL = PR  = 1.
                    146: *          If IJOB = 0, 2 or 3 PL, PR are not referenced.
                    147: *
                    148: *  DIF     (output) DOUBLE PRECISION array, dimension (2).
                    149: *          If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
                    150: *          If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
                    151: *          Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
                    152: *          estimates of Difu and Difl, computed using reversed
                    153: *          communication with ZLACN2.
                    154: *          If M = 0 or N, DIF(1:2) = F-norm([A, B]).
                    155: *          If IJOB = 0 or 1, DIF is not referenced.
                    156: *
                    157: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
                    158: *          IF IJOB = 0, WORK is not referenced.  Otherwise,
                    159: *          on exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    160: *
                    161: *  LWORK   (input) INTEGER
                    162: *          The dimension of the array WORK. LWORK >=  1
                    163: *          If IJOB = 1, 2 or 4, LWORK >=  2*M*(N-M)
                    164: *          If IJOB = 3 or 5, LWORK >=  4*M*(N-M)
                    165: *
                    166: *          If LWORK = -1, then a workspace query is assumed; the routine
                    167: *          only calculates the optimal size of the WORK array, returns
                    168: *          this value as the first entry of the WORK array, and no error
                    169: *          message related to LWORK is issued by XERBLA.
                    170: *
                    171: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
                    172: *          IF IJOB = 0, IWORK is not referenced.  Otherwise,
                    173: *          on exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
                    174: *
                    175: *  LIWORK  (input) INTEGER
                    176: *          The dimension of the array IWORK. LIWORK >= 1.
                    177: *          If IJOB = 1, 2 or 4, LIWORK >=  N+2;
                    178: *          If IJOB = 3 or 5, LIWORK >= MAX(N+2, 2*M*(N-M));
                    179: *
                    180: *          If LIWORK = -1, then a workspace query is assumed; the
                    181: *          routine only calculates the optimal size of the IWORK array,
                    182: *          returns this value as the first entry of the IWORK array, and
                    183: *          no error message related to LIWORK is issued by XERBLA.
                    184: *
                    185: *  INFO    (output) INTEGER
                    186: *            =0: Successful exit.
                    187: *            <0: If INFO = -i, the i-th argument had an illegal value.
                    188: *            =1: Reordering of (A, B) failed because the transformed
                    189: *                matrix pair (A, B) would be too far from generalized
                    190: *                Schur form; the problem is very ill-conditioned.
                    191: *                (A, B) may have been partially reordered.
                    192: *                If requested, 0 is returned in DIF(*), PL and PR.
                    193: *
                    194: *
                    195: *  Further Details
                    196: *  ===============
                    197: *
                    198: *  ZTGSEN first collects the selected eigenvalues by computing unitary
                    199: *  U and W that move them to the top left corner of (A, B). In other
                    200: *  words, the selected eigenvalues are the eigenvalues of (A11, B11) in
                    201: *
                    202: *                U'*(A, B)*W = (A11 A12) (B11 B12) n1
                    203: *                              ( 0  A22),( 0  B22) n2
                    204: *                                n1  n2    n1  n2
                    205: *
                    206: *  where N = n1+n2 and U' means the conjugate transpose of U. The first
                    207: *  n1 columns of U and W span the specified pair of left and right
                    208: *  eigenspaces (deflating subspaces) of (A, B).
                    209: *
                    210: *  If (A, B) has been obtained from the generalized real Schur
                    211: *  decomposition of a matrix pair (C, D) = Q*(A, B)*Z', then the
                    212: *  reordered generalized Schur form of (C, D) is given by
                    213: *
                    214: *           (C, D) = (Q*U)*(U'*(A, B)*W)*(Z*W)',
                    215: *
                    216: *  and the first n1 columns of Q*U and Z*W span the corresponding
                    217: *  deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
                    218: *
                    219: *  Note that if the selected eigenvalue is sufficiently ill-conditioned,
                    220: *  then its value may differ significantly from its value before
                    221: *  reordering.
                    222: *
                    223: *  The reciprocal condition numbers of the left and right eigenspaces
                    224: *  spanned by the first n1 columns of U and W (or Q*U and Z*W) may
                    225: *  be returned in DIF(1:2), corresponding to Difu and Difl, resp.
                    226: *
                    227: *  The Difu and Difl are defined as:
                    228: *
                    229: *       Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
                    230: *  and
                    231: *       Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
                    232: *
                    233: *  where sigma-min(Zu) is the smallest singular value of the
                    234: *  (2*n1*n2)-by-(2*n1*n2) matrix
                    235: *
                    236: *       Zu = [ kron(In2, A11)  -kron(A22', In1) ]
                    237: *            [ kron(In2, B11)  -kron(B22', In1) ].
                    238: *
                    239: *  Here, Inx is the identity matrix of size nx and A22' is the
                    240: *  transpose of A22. kron(X, Y) is the Kronecker product between
                    241: *  the matrices X and Y.
                    242: *
                    243: *  When DIF(2) is small, small changes in (A, B) can cause large changes
                    244: *  in the deflating subspace. An approximate (asymptotic) bound on the
                    245: *  maximum angular error in the computed deflating subspaces is
                    246: *
                    247: *       EPS * norm((A, B)) / DIF(2),
                    248: *
                    249: *  where EPS is the machine precision.
                    250: *
                    251: *  The reciprocal norm of the projectors on the left and right
                    252: *  eigenspaces associated with (A11, B11) may be returned in PL and PR.
                    253: *  They are computed as follows. First we compute L and R so that
                    254: *  P*(A, B)*Q is block diagonal, where
                    255: *
                    256: *       P = ( I -L ) n1           Q = ( I R ) n1
                    257: *           ( 0  I ) n2    and        ( 0 I ) n2
                    258: *             n1 n2                    n1 n2
                    259: *
                    260: *  and (L, R) is the solution to the generalized Sylvester equation
                    261: *
                    262: *       A11*R - L*A22 = -A12
                    263: *       B11*R - L*B22 = -B12
                    264: *
                    265: *  Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
                    266: *  An approximate (asymptotic) bound on the average absolute error of
                    267: *  the selected eigenvalues is
                    268: *
                    269: *       EPS * norm((A, B)) / PL.
                    270: *
                    271: *  There are also global error bounds which valid for perturbations up
                    272: *  to a certain restriction:  A lower bound (x) on the smallest
                    273: *  F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
                    274: *  coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
                    275: *  (i.e. (A + E, B + F), is
                    276: *
                    277: *   x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
                    278: *
                    279: *  An approximate bound on x can be computed from DIF(1:2), PL and PR.
                    280: *
                    281: *  If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
                    282: *  (L', R') and unperturbed (L, R) left and right deflating subspaces
                    283: *  associated with the selected cluster in the (1,1)-blocks can be
                    284: *  bounded as
                    285: *
                    286: *   max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
                    287: *   max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
                    288: *
                    289: *  See LAPACK User's Guide section 4.11 or the following references
                    290: *  for more information.
                    291: *
                    292: *  Note that if the default method for computing the Frobenius-norm-
                    293: *  based estimate DIF is not wanted (see ZLATDF), then the parameter
                    294: *  IDIFJB (see below) should be changed from 3 to 4 (routine ZLATDF
                    295: *  (IJOB = 2 will be used)). See ZTGSYL for more details.
                    296: *
                    297: *  Based on contributions by
                    298: *     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
                    299: *     Umea University, S-901 87 Umea, Sweden.
                    300: *
                    301: *  References
                    302: *  ==========
                    303: *
                    304: *  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
                    305: *      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
                    306: *      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
                    307: *      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
                    308: *
                    309: *  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
                    310: *      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
                    311: *      Estimation: Theory, Algorithms and Software, Report
                    312: *      UMINF - 94.04, Department of Computing Science, Umea University,
                    313: *      S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.
                    314: *      To appear in Numerical Algorithms, 1996.
                    315: *
                    316: *  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
                    317: *      for Solving the Generalized Sylvester Equation and Estimating the
                    318: *      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
                    319: *      Department of Computing Science, Umea University, S-901 87 Umea,
                    320: *      Sweden, December 1993, Revised April 1994, Also as LAPACK working
                    321: *      Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
                    322: *      1996.
                    323: *
                    324: *  =====================================================================
                    325: *
                    326: *     .. Parameters ..
                    327:       INTEGER            IDIFJB
                    328:       PARAMETER          ( IDIFJB = 3 )
                    329:       DOUBLE PRECISION   ZERO, ONE
                    330:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    331: *     ..
                    332: *     .. Local Scalars ..
                    333:       LOGICAL            LQUERY, SWAP, WANTD, WANTD1, WANTD2, WANTP
                    334:       INTEGER            I, IERR, IJB, K, KASE, KS, LIWMIN, LWMIN, MN2,
                    335:      $                   N1, N2
                    336:       DOUBLE PRECISION   DSCALE, DSUM, RDSCAL, SAFMIN
                    337:       COMPLEX*16         TEMP1, TEMP2
                    338: *     ..
                    339: *     .. Local Arrays ..
                    340:       INTEGER            ISAVE( 3 )
                    341: *     ..
                    342: *     .. External Subroutines ..
                    343:       EXTERNAL           XERBLA, ZLACN2, ZLACPY, ZLASSQ, ZSCAL, ZTGEXC,
                    344:      $                   ZTGSYL
                    345: *     ..
                    346: *     .. Intrinsic Functions ..
                    347:       INTRINSIC          ABS, DCMPLX, DCONJG, MAX, SQRT
                    348: *     ..
                    349: *     .. External Functions ..
                    350:       DOUBLE PRECISION   DLAMCH
                    351:       EXTERNAL           DLAMCH
                    352: *     ..
                    353: *     .. Executable Statements ..
                    354: *
                    355: *     Decode and test the input parameters
                    356: *
                    357:       INFO = 0
                    358:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    359: *
                    360:       IF( IJOB.LT.0 .OR. IJOB.GT.5 ) THEN
                    361:          INFO = -1
                    362:       ELSE IF( N.LT.0 ) THEN
                    363:          INFO = -5
                    364:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    365:          INFO = -7
                    366:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    367:          INFO = -9
                    368:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
                    369:          INFO = -13
                    370:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    371:          INFO = -15
                    372:       END IF
                    373: *
                    374:       IF( INFO.NE.0 ) THEN
                    375:          CALL XERBLA( 'ZTGSEN', -INFO )
                    376:          RETURN
                    377:       END IF
                    378: *
                    379:       IERR = 0
                    380: *
                    381:       WANTP = IJOB.EQ.1 .OR. IJOB.GE.4
                    382:       WANTD1 = IJOB.EQ.2 .OR. IJOB.EQ.4
                    383:       WANTD2 = IJOB.EQ.3 .OR. IJOB.EQ.5
                    384:       WANTD = WANTD1 .OR. WANTD2
                    385: *
                    386: *     Set M to the dimension of the specified pair of deflating
                    387: *     subspaces.
                    388: *
                    389:       M = 0
                    390:       DO 10 K = 1, N
                    391:          ALPHA( K ) = A( K, K )
                    392:          BETA( K ) = B( K, K )
                    393:          IF( K.LT.N ) THEN
                    394:             IF( SELECT( K ) )
                    395:      $         M = M + 1
                    396:          ELSE
                    397:             IF( SELECT( N ) )
                    398:      $         M = M + 1
                    399:          END IF
                    400:    10 CONTINUE
                    401: *
                    402:       IF( IJOB.EQ.1 .OR. IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN
                    403:          LWMIN = MAX( 1, 2*M*( N-M ) )
                    404:          LIWMIN = MAX( 1, N+2 )
                    405:       ELSE IF( IJOB.EQ.3 .OR. IJOB.EQ.5 ) THEN
                    406:          LWMIN = MAX( 1, 4*M*( N-M ) )
                    407:          LIWMIN = MAX( 1, 2*M*( N-M ), N+2 )
                    408:       ELSE
                    409:          LWMIN = 1
                    410:          LIWMIN = 1
                    411:       END IF
                    412: *
                    413:       WORK( 1 ) = LWMIN
                    414:       IWORK( 1 ) = LIWMIN
                    415: *
                    416:       IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    417:          INFO = -21
                    418:       ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    419:          INFO = -23
                    420:       END IF
                    421: *
                    422:       IF( INFO.NE.0 ) THEN
                    423:          CALL XERBLA( 'ZTGSEN', -INFO )
                    424:          RETURN
                    425:       ELSE IF( LQUERY ) THEN
                    426:          RETURN
                    427:       END IF
                    428: *
                    429: *     Quick return if possible.
                    430: *
                    431:       IF( M.EQ.N .OR. M.EQ.0 ) THEN
                    432:          IF( WANTP ) THEN
                    433:             PL = ONE
                    434:             PR = ONE
                    435:          END IF
                    436:          IF( WANTD ) THEN
                    437:             DSCALE = ZERO
                    438:             DSUM = ONE
                    439:             DO 20 I = 1, N
                    440:                CALL ZLASSQ( N, A( 1, I ), 1, DSCALE, DSUM )
                    441:                CALL ZLASSQ( N, B( 1, I ), 1, DSCALE, DSUM )
                    442:    20       CONTINUE
                    443:             DIF( 1 ) = DSCALE*SQRT( DSUM )
                    444:             DIF( 2 ) = DIF( 1 )
                    445:          END IF
                    446:          GO TO 70
                    447:       END IF
                    448: *
                    449: *     Get machine constant
                    450: *
                    451:       SAFMIN = DLAMCH( 'S' )
                    452: *
                    453: *     Collect the selected blocks at the top-left corner of (A, B).
                    454: *
                    455:       KS = 0
                    456:       DO 30 K = 1, N
                    457:          SWAP = SELECT( K )
                    458:          IF( SWAP ) THEN
                    459:             KS = KS + 1
                    460: *
                    461: *           Swap the K-th block to position KS. Compute unitary Q
                    462: *           and Z that will swap adjacent diagonal blocks in (A, B).
                    463: *
                    464:             IF( K.NE.KS )
                    465:      $         CALL ZTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
                    466:      $                      LDZ, K, KS, IERR )
                    467: *
                    468:             IF( IERR.GT.0 ) THEN
                    469: *
                    470: *              Swap is rejected: exit.
                    471: *
                    472:                INFO = 1
                    473:                IF( WANTP ) THEN
                    474:                   PL = ZERO
                    475:                   PR = ZERO
                    476:                END IF
                    477:                IF( WANTD ) THEN
                    478:                   DIF( 1 ) = ZERO
                    479:                   DIF( 2 ) = ZERO
                    480:                END IF
                    481:                GO TO 70
                    482:             END IF
                    483:          END IF
                    484:    30 CONTINUE
                    485:       IF( WANTP ) THEN
                    486: *
                    487: *        Solve generalized Sylvester equation for R and L:
                    488: *                   A11 * R - L * A22 = A12
                    489: *                   B11 * R - L * B22 = B12
                    490: *
                    491:          N1 = M
                    492:          N2 = N - M
                    493:          I = N1 + 1
                    494:          CALL ZLACPY( 'Full', N1, N2, A( 1, I ), LDA, WORK, N1 )
                    495:          CALL ZLACPY( 'Full', N1, N2, B( 1, I ), LDB, WORK( N1*N2+1 ),
                    496:      $                N1 )
                    497:          IJB = 0
                    498:          CALL ZTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
                    499:      $                N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ), N1,
                    500:      $                DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ),
                    501:      $                LWORK-2*N1*N2, IWORK, IERR )
                    502: *
                    503: *        Estimate the reciprocal of norms of "projections" onto
                    504: *        left and right eigenspaces
                    505: *
                    506:          RDSCAL = ZERO
                    507:          DSUM = ONE
                    508:          CALL ZLASSQ( N1*N2, WORK, 1, RDSCAL, DSUM )
                    509:          PL = RDSCAL*SQRT( DSUM )
                    510:          IF( PL.EQ.ZERO ) THEN
                    511:             PL = ONE
                    512:          ELSE
                    513:             PL = DSCALE / ( SQRT( DSCALE*DSCALE / PL+PL )*SQRT( PL ) )
                    514:          END IF
                    515:          RDSCAL = ZERO
                    516:          DSUM = ONE
                    517:          CALL ZLASSQ( N1*N2, WORK( N1*N2+1 ), 1, RDSCAL, DSUM )
                    518:          PR = RDSCAL*SQRT( DSUM )
                    519:          IF( PR.EQ.ZERO ) THEN
                    520:             PR = ONE
                    521:          ELSE
                    522:             PR = DSCALE / ( SQRT( DSCALE*DSCALE / PR+PR )*SQRT( PR ) )
                    523:          END IF
                    524:       END IF
                    525:       IF( WANTD ) THEN
                    526: *
                    527: *        Compute estimates Difu and Difl.
                    528: *
                    529:          IF( WANTD1 ) THEN
                    530:             N1 = M
                    531:             N2 = N - M
                    532:             I = N1 + 1
                    533:             IJB = IDIFJB
                    534: *
                    535: *           Frobenius norm-based Difu estimate.
                    536: *
                    537:             CALL ZTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
                    538:      $                   N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ),
                    539:      $                   N1, DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ),
                    540:      $                   LWORK-2*N1*N2, IWORK, IERR )
                    541: *
                    542: *           Frobenius norm-based Difl estimate.
                    543: *
                    544:             CALL ZTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA, WORK,
                    545:      $                   N2, B( I, I ), LDB, B, LDB, WORK( N1*N2+1 ),
                    546:      $                   N2, DSCALE, DIF( 2 ), WORK( N1*N2*2+1 ),
                    547:      $                   LWORK-2*N1*N2, IWORK, IERR )
                    548:          ELSE
                    549: *
                    550: *           Compute 1-norm-based estimates of Difu and Difl using
                    551: *           reversed communication with ZLACN2. In each step a
                    552: *           generalized Sylvester equation or a transposed variant
                    553: *           is solved.
                    554: *
                    555:             KASE = 0
                    556:             N1 = M
                    557:             N2 = N - M
                    558:             I = N1 + 1
                    559:             IJB = 0
                    560:             MN2 = 2*N1*N2
                    561: *
                    562: *           1-norm-based estimate of Difu.
                    563: *
                    564:    40       CONTINUE
                    565:             CALL ZLACN2( MN2, WORK( MN2+1 ), WORK, DIF( 1 ), KASE,
                    566:      $                   ISAVE )
                    567:             IF( KASE.NE.0 ) THEN
                    568:                IF( KASE.EQ.1 ) THEN
                    569: *
                    570: *                 Solve generalized Sylvester equation
                    571: *
                    572:                   CALL ZTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA,
                    573:      $                         WORK, N1, B, LDB, B( I, I ), LDB,
                    574:      $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
                    575:      $                         WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
                    576:      $                         IERR )
                    577:                ELSE
                    578: *
                    579: *                 Solve the transposed variant.
                    580: *
                    581:                   CALL ZTGSYL( 'C', IJB, N1, N2, A, LDA, A( I, I ), LDA,
                    582:      $                         WORK, N1, B, LDB, B( I, I ), LDB,
                    583:      $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
                    584:      $                         WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
                    585:      $                         IERR )
                    586:                END IF
                    587:                GO TO 40
                    588:             END IF
                    589:             DIF( 1 ) = DSCALE / DIF( 1 )
                    590: *
                    591: *           1-norm-based estimate of Difl.
                    592: *
                    593:    50       CONTINUE
                    594:             CALL ZLACN2( MN2, WORK( MN2+1 ), WORK, DIF( 2 ), KASE,
                    595:      $                   ISAVE )
                    596:             IF( KASE.NE.0 ) THEN
                    597:                IF( KASE.EQ.1 ) THEN
                    598: *
                    599: *                 Solve generalized Sylvester equation
                    600: *
                    601:                   CALL ZTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA,
                    602:      $                         WORK, N2, B( I, I ), LDB, B, LDB,
                    603:      $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
                    604:      $                         WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
                    605:      $                         IERR )
                    606:                ELSE
                    607: *
                    608: *                 Solve the transposed variant.
                    609: *
                    610:                   CALL ZTGSYL( 'C', IJB, N2, N1, A( I, I ), LDA, A, LDA,
                    611:      $                         WORK, N2, B, LDB, B( I, I ), LDB,
                    612:      $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
                    613:      $                         WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
                    614:      $                         IERR )
                    615:                END IF
                    616:                GO TO 50
                    617:             END IF
                    618:             DIF( 2 ) = DSCALE / DIF( 2 )
                    619:          END IF
                    620:       END IF
                    621: *
                    622: *     If B(K,K) is complex, make it real and positive (normalization
                    623: *     of the generalized Schur form) and Store the generalized
                    624: *     eigenvalues of reordered pair (A, B)
                    625: *
                    626:       DO 60 K = 1, N
                    627:          DSCALE = ABS( B( K, K ) )
                    628:          IF( DSCALE.GT.SAFMIN ) THEN
                    629:             TEMP1 = DCONJG( B( K, K ) / DSCALE )
                    630:             TEMP2 = B( K, K ) / DSCALE
                    631:             B( K, K ) = DSCALE
                    632:             CALL ZSCAL( N-K, TEMP1, B( K, K+1 ), LDB )
                    633:             CALL ZSCAL( N-K+1, TEMP1, A( K, K ), LDA )
                    634:             IF( WANTQ )
                    635:      $         CALL ZSCAL( N, TEMP2, Q( 1, K ), 1 )
                    636:          ELSE
                    637:             B( K, K ) = DCMPLX( ZERO, ZERO )
                    638:          END IF
                    639: *
                    640:          ALPHA( K ) = A( K, K )
                    641:          BETA( K ) = B( K, K )
                    642: *
                    643:    60 CONTINUE
                    644: *
                    645:    70 CONTINUE
                    646: *
                    647:       WORK( 1 ) = LWMIN
                    648:       IWORK( 1 ) = LIWMIN
                    649: *
                    650:       RETURN
                    651: *
                    652: *     End of ZTGSEN
                    653: *
                    654:       END

CVSweb interface <joel.bertrand@systella.fr>