Annotation of rpl/lapack/lapack/ztgsen.f, revision 1.21

1.10      bertrand    1: *> \brief \b ZTGSEN
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.17      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.10      bertrand    7: *
                      8: *> \htmlonly
1.17      bertrand    9: *> Download ZTGSEN + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztgsen.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztgsen.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztgsen.f">
1.10      bertrand   15: *> [TXT]</a>
1.17      bertrand   16: *> \endhtmlonly
1.10      bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
                     22: *                          ALPHA, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF,
                     23: *                          WORK, LWORK, IWORK, LIWORK, INFO )
1.17      bertrand   24: *
1.10      bertrand   25: *       .. Scalar Arguments ..
                     26: *       LOGICAL            WANTQ, WANTZ
                     27: *       INTEGER            IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
                     28: *      $                   M, N
                     29: *       DOUBLE PRECISION   PL, PR
                     30: *       ..
                     31: *       .. Array Arguments ..
                     32: *       LOGICAL            SELECT( * )
                     33: *       INTEGER            IWORK( * )
                     34: *       DOUBLE PRECISION   DIF( * )
                     35: *       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
                     36: *      $                   BETA( * ), Q( LDQ, * ), WORK( * ), Z( LDZ, * )
                     37: *       ..
1.17      bertrand   38: *
1.10      bertrand   39: *
                     40: *> \par Purpose:
                     41: *  =============
                     42: *>
                     43: *> \verbatim
                     44: *>
                     45: *> ZTGSEN reorders the generalized Schur decomposition of a complex
                     46: *> matrix pair (A, B) (in terms of an unitary equivalence trans-
                     47: *> formation Q**H * (A, B) * Z), so that a selected cluster of eigenvalues
                     48: *> appears in the leading diagonal blocks of the pair (A,B). The leading
                     49: *> columns of Q and Z form unitary bases of the corresponding left and
                     50: *> right eigenspaces (deflating subspaces). (A, B) must be in
                     51: *> generalized Schur canonical form, that is, A and B are both upper
                     52: *> triangular.
                     53: *>
                     54: *> ZTGSEN also computes the generalized eigenvalues
                     55: *>
                     56: *>          w(j)= ALPHA(j) / BETA(j)
                     57: *>
                     58: *> of the reordered matrix pair (A, B).
                     59: *>
                     60: *> Optionally, the routine computes estimates of reciprocal condition
                     61: *> numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
                     62: *> (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
                     63: *> between the matrix pairs (A11, B11) and (A22,B22) that correspond to
                     64: *> the selected cluster and the eigenvalues outside the cluster, resp.,
                     65: *> and norms of "projections" onto left and right eigenspaces w.r.t.
                     66: *> the selected cluster in the (1,1)-block.
                     67: *>
                     68: *> \endverbatim
                     69: *
                     70: *  Arguments:
                     71: *  ==========
                     72: *
                     73: *> \param[in] IJOB
                     74: *> \verbatim
1.19      bertrand   75: *>          IJOB is INTEGER
1.10      bertrand   76: *>          Specifies whether condition numbers are required for the
                     77: *>          cluster of eigenvalues (PL and PR) or the deflating subspaces
                     78: *>          (Difu and Difl):
                     79: *>           =0: Only reorder w.r.t. SELECT. No extras.
                     80: *>           =1: Reciprocal of norms of "projections" onto left and right
                     81: *>               eigenspaces w.r.t. the selected cluster (PL and PR).
                     82: *>           =2: Upper bounds on Difu and Difl. F-norm-based estimate
                     83: *>               (DIF(1:2)).
                     84: *>           =3: Estimate of Difu and Difl. 1-norm-based estimate
                     85: *>               (DIF(1:2)).
                     86: *>               About 5 times as expensive as IJOB = 2.
                     87: *>           =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
                     88: *>               version to get it all.
                     89: *>           =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)
                     90: *> \endverbatim
                     91: *>
                     92: *> \param[in] WANTQ
                     93: *> \verbatim
                     94: *>          WANTQ is LOGICAL
                     95: *>          .TRUE. : update the left transformation matrix Q;
                     96: *>          .FALSE.: do not update Q.
                     97: *> \endverbatim
                     98: *>
                     99: *> \param[in] WANTZ
                    100: *> \verbatim
                    101: *>          WANTZ is LOGICAL
                    102: *>          .TRUE. : update the right transformation matrix Z;
                    103: *>          .FALSE.: do not update Z.
                    104: *> \endverbatim
                    105: *>
                    106: *> \param[in] SELECT
                    107: *> \verbatim
                    108: *>          SELECT is LOGICAL array, dimension (N)
                    109: *>          SELECT specifies the eigenvalues in the selected cluster. To
                    110: *>          select an eigenvalue w(j), SELECT(j) must be set to
                    111: *>          .TRUE..
                    112: *> \endverbatim
                    113: *>
                    114: *> \param[in] N
                    115: *> \verbatim
                    116: *>          N is INTEGER
                    117: *>          The order of the matrices A and B. N >= 0.
                    118: *> \endverbatim
                    119: *>
                    120: *> \param[in,out] A
                    121: *> \verbatim
                    122: *>          A is COMPLEX*16 array, dimension(LDA,N)
                    123: *>          On entry, the upper triangular matrix A, in generalized
                    124: *>          Schur canonical form.
                    125: *>          On exit, A is overwritten by the reordered matrix A.
                    126: *> \endverbatim
                    127: *>
                    128: *> \param[in] LDA
                    129: *> \verbatim
                    130: *>          LDA is INTEGER
                    131: *>          The leading dimension of the array A. LDA >= max(1,N).
                    132: *> \endverbatim
                    133: *>
                    134: *> \param[in,out] B
                    135: *> \verbatim
                    136: *>          B is COMPLEX*16 array, dimension(LDB,N)
                    137: *>          On entry, the upper triangular matrix B, in generalized
                    138: *>          Schur canonical form.
                    139: *>          On exit, B is overwritten by the reordered matrix B.
                    140: *> \endverbatim
                    141: *>
                    142: *> \param[in] LDB
                    143: *> \verbatim
                    144: *>          LDB is INTEGER
                    145: *>          The leading dimension of the array B. LDB >= max(1,N).
                    146: *> \endverbatim
                    147: *>
                    148: *> \param[out] ALPHA
                    149: *> \verbatim
                    150: *>          ALPHA is COMPLEX*16 array, dimension (N)
                    151: *> \endverbatim
                    152: *>
                    153: *> \param[out] BETA
                    154: *> \verbatim
                    155: *>          BETA is COMPLEX*16 array, dimension (N)
                    156: *>
                    157: *>          The diagonal elements of A and B, respectively,
                    158: *>          when the pair (A,B) has been reduced to generalized Schur
                    159: *>          form.  ALPHA(i)/BETA(i) i=1,...,N are the generalized
                    160: *>          eigenvalues.
                    161: *> \endverbatim
                    162: *>
                    163: *> \param[in,out] Q
                    164: *> \verbatim
                    165: *>          Q is COMPLEX*16 array, dimension (LDQ,N)
                    166: *>          On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
                    167: *>          On exit, Q has been postmultiplied by the left unitary
                    168: *>          transformation matrix which reorder (A, B); The leading M
                    169: *>          columns of Q form orthonormal bases for the specified pair of
                    170: *>          left eigenspaces (deflating subspaces).
                    171: *>          If WANTQ = .FALSE., Q is not referenced.
                    172: *> \endverbatim
                    173: *>
                    174: *> \param[in] LDQ
                    175: *> \verbatim
                    176: *>          LDQ is INTEGER
                    177: *>          The leading dimension of the array Q. LDQ >= 1.
                    178: *>          If WANTQ = .TRUE., LDQ >= N.
                    179: *> \endverbatim
                    180: *>
                    181: *> \param[in,out] Z
                    182: *> \verbatim
                    183: *>          Z is COMPLEX*16 array, dimension (LDZ,N)
                    184: *>          On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
                    185: *>          On exit, Z has been postmultiplied by the left unitary
                    186: *>          transformation matrix which reorder (A, B); The leading M
                    187: *>          columns of Z form orthonormal bases for the specified pair of
                    188: *>          left eigenspaces (deflating subspaces).
                    189: *>          If WANTZ = .FALSE., Z is not referenced.
                    190: *> \endverbatim
                    191: *>
                    192: *> \param[in] LDZ
                    193: *> \verbatim
                    194: *>          LDZ is INTEGER
                    195: *>          The leading dimension of the array Z. LDZ >= 1.
                    196: *>          If WANTZ = .TRUE., LDZ >= N.
                    197: *> \endverbatim
                    198: *>
                    199: *> \param[out] M
                    200: *> \verbatim
                    201: *>          M is INTEGER
                    202: *>          The dimension of the specified pair of left and right
                    203: *>          eigenspaces, (deflating subspaces) 0 <= M <= N.
                    204: *> \endverbatim
                    205: *>
                    206: *> \param[out] PL
                    207: *> \verbatim
                    208: *>          PL is DOUBLE PRECISION
                    209: *> \endverbatim
                    210: *>
                    211: *> \param[out] PR
                    212: *> \verbatim
                    213: *>          PR is DOUBLE PRECISION
                    214: *>
                    215: *>          If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
                    216: *>          reciprocal  of the norm of "projections" onto left and right
                    217: *>          eigenspace with respect to the selected cluster.
                    218: *>          0 < PL, PR <= 1.
                    219: *>          If M = 0 or M = N, PL = PR  = 1.
                    220: *>          If IJOB = 0, 2 or 3 PL, PR are not referenced.
                    221: *> \endverbatim
                    222: *>
                    223: *> \param[out] DIF
                    224: *> \verbatim
                    225: *>          DIF is DOUBLE PRECISION array, dimension (2).
                    226: *>          If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
                    227: *>          If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
                    228: *>          Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
                    229: *>          estimates of Difu and Difl, computed using reversed
                    230: *>          communication with ZLACN2.
                    231: *>          If M = 0 or N, DIF(1:2) = F-norm([A, B]).
                    232: *>          If IJOB = 0 or 1, DIF is not referenced.
                    233: *> \endverbatim
                    234: *>
                    235: *> \param[out] WORK
                    236: *> \verbatim
                    237: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                    238: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    239: *> \endverbatim
                    240: *>
                    241: *> \param[in] LWORK
                    242: *> \verbatim
                    243: *>          LWORK is INTEGER
                    244: *>          The dimension of the array WORK. LWORK >=  1
                    245: *>          If IJOB = 1, 2 or 4, LWORK >=  2*M*(N-M)
                    246: *>          If IJOB = 3 or 5, LWORK >=  4*M*(N-M)
                    247: *>
                    248: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    249: *>          only calculates the optimal size of the WORK array, returns
                    250: *>          this value as the first entry of the WORK array, and no error
                    251: *>          message related to LWORK is issued by XERBLA.
                    252: *> \endverbatim
                    253: *>
                    254: *> \param[out] IWORK
                    255: *> \verbatim
                    256: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
                    257: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
                    258: *> \endverbatim
                    259: *>
                    260: *> \param[in] LIWORK
                    261: *> \verbatim
                    262: *>          LIWORK is INTEGER
                    263: *>          The dimension of the array IWORK. LIWORK >= 1.
                    264: *>          If IJOB = 1, 2 or 4, LIWORK >=  N+2;
                    265: *>          If IJOB = 3 or 5, LIWORK >= MAX(N+2, 2*M*(N-M));
                    266: *>
                    267: *>          If LIWORK = -1, then a workspace query is assumed; the
                    268: *>          routine only calculates the optimal size of the IWORK array,
                    269: *>          returns this value as the first entry of the IWORK array, and
                    270: *>          no error message related to LIWORK is issued by XERBLA.
                    271: *> \endverbatim
                    272: *>
                    273: *> \param[out] INFO
                    274: *> \verbatim
                    275: *>          INFO is INTEGER
                    276: *>            =0: Successful exit.
                    277: *>            <0: If INFO = -i, the i-th argument had an illegal value.
                    278: *>            =1: Reordering of (A, B) failed because the transformed
                    279: *>                matrix pair (A, B) would be too far from generalized
                    280: *>                Schur form; the problem is very ill-conditioned.
                    281: *>                (A, B) may have been partially reordered.
                    282: *>                If requested, 0 is returned in DIF(*), PL and PR.
                    283: *> \endverbatim
                    284: *
                    285: *  Authors:
                    286: *  ========
                    287: *
1.17      bertrand  288: *> \author Univ. of Tennessee
                    289: *> \author Univ. of California Berkeley
                    290: *> \author Univ. of Colorado Denver
                    291: *> \author NAG Ltd.
1.10      bertrand  292: *
                    293: *> \ingroup complex16OTHERcomputational
                    294: *
                    295: *> \par Further Details:
                    296: *  =====================
                    297: *>
                    298: *> \verbatim
                    299: *>
                    300: *>  ZTGSEN first collects the selected eigenvalues by computing unitary
                    301: *>  U and W that move them to the top left corner of (A, B). In other
                    302: *>  words, the selected eigenvalues are the eigenvalues of (A11, B11) in
                    303: *>
                    304: *>              U**H*(A, B)*W = (A11 A12) (B11 B12) n1
                    305: *>                              ( 0  A22),( 0  B22) n2
                    306: *>                                n1  n2    n1  n2
                    307: *>
                    308: *>  where N = n1+n2 and U**H means the conjugate transpose of U. The first
                    309: *>  n1 columns of U and W span the specified pair of left and right
                    310: *>  eigenspaces (deflating subspaces) of (A, B).
                    311: *>
                    312: *>  If (A, B) has been obtained from the generalized real Schur
                    313: *>  decomposition of a matrix pair (C, D) = Q*(A, B)*Z**H, then the
                    314: *>  reordered generalized Schur form of (C, D) is given by
                    315: *>
                    316: *>           (C, D) = (Q*U)*(U**H *(A, B)*W)*(Z*W)**H,
                    317: *>
                    318: *>  and the first n1 columns of Q*U and Z*W span the corresponding
                    319: *>  deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
                    320: *>
                    321: *>  Note that if the selected eigenvalue is sufficiently ill-conditioned,
                    322: *>  then its value may differ significantly from its value before
                    323: *>  reordering.
                    324: *>
                    325: *>  The reciprocal condition numbers of the left and right eigenspaces
                    326: *>  spanned by the first n1 columns of U and W (or Q*U and Z*W) may
                    327: *>  be returned in DIF(1:2), corresponding to Difu and Difl, resp.
                    328: *>
                    329: *>  The Difu and Difl are defined as:
                    330: *>
                    331: *>       Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
                    332: *>  and
                    333: *>       Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
                    334: *>
                    335: *>  where sigma-min(Zu) is the smallest singular value of the
                    336: *>  (2*n1*n2)-by-(2*n1*n2) matrix
                    337: *>
                    338: *>       Zu = [ kron(In2, A11)  -kron(A22**H, In1) ]
                    339: *>            [ kron(In2, B11)  -kron(B22**H, In1) ].
                    340: *>
                    341: *>  Here, Inx is the identity matrix of size nx and A22**H is the
                    342: *>  conjugate transpose of A22. kron(X, Y) is the Kronecker product between
                    343: *>  the matrices X and Y.
                    344: *>
                    345: *>  When DIF(2) is small, small changes in (A, B) can cause large changes
                    346: *>  in the deflating subspace. An approximate (asymptotic) bound on the
                    347: *>  maximum angular error in the computed deflating subspaces is
                    348: *>
                    349: *>       EPS * norm((A, B)) / DIF(2),
                    350: *>
                    351: *>  where EPS is the machine precision.
                    352: *>
                    353: *>  The reciprocal norm of the projectors on the left and right
                    354: *>  eigenspaces associated with (A11, B11) may be returned in PL and PR.
                    355: *>  They are computed as follows. First we compute L and R so that
                    356: *>  P*(A, B)*Q is block diagonal, where
                    357: *>
                    358: *>       P = ( I -L ) n1           Q = ( I R ) n1
                    359: *>           ( 0  I ) n2    and        ( 0 I ) n2
                    360: *>             n1 n2                    n1 n2
                    361: *>
                    362: *>  and (L, R) is the solution to the generalized Sylvester equation
                    363: *>
                    364: *>       A11*R - L*A22 = -A12
                    365: *>       B11*R - L*B22 = -B12
                    366: *>
                    367: *>  Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
                    368: *>  An approximate (asymptotic) bound on the average absolute error of
                    369: *>  the selected eigenvalues is
                    370: *>
                    371: *>       EPS * norm((A, B)) / PL.
                    372: *>
                    373: *>  There are also global error bounds which valid for perturbations up
                    374: *>  to a certain restriction:  A lower bound (x) on the smallest
                    375: *>  F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
                    376: *>  coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
                    377: *>  (i.e. (A + E, B + F), is
                    378: *>
                    379: *>   x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
                    380: *>
                    381: *>  An approximate bound on x can be computed from DIF(1:2), PL and PR.
                    382: *>
                    383: *>  If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
                    384: *>  (L', R') and unperturbed (L, R) left and right deflating subspaces
                    385: *>  associated with the selected cluster in the (1,1)-blocks can be
                    386: *>  bounded as
                    387: *>
                    388: *>   max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
                    389: *>   max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
                    390: *>
                    391: *>  See LAPACK User's Guide section 4.11 or the following references
                    392: *>  for more information.
                    393: *>
                    394: *>  Note that if the default method for computing the Frobenius-norm-
                    395: *>  based estimate DIF is not wanted (see ZLATDF), then the parameter
                    396: *>  IDIFJB (see below) should be changed from 3 to 4 (routine ZLATDF
                    397: *>  (IJOB = 2 will be used)). See ZTGSYL for more details.
                    398: *> \endverbatim
                    399: *
                    400: *> \par Contributors:
                    401: *  ==================
                    402: *>
                    403: *>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
                    404: *>     Umea University, S-901 87 Umea, Sweden.
                    405: *
                    406: *> \par References:
                    407: *  ================
                    408: *>
                    409: *>  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
                    410: *>      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
                    411: *>      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
                    412: *>      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
                    413: *> \n
                    414: *>  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
                    415: *>      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
                    416: *>      Estimation: Theory, Algorithms and Software, Report
                    417: *>      UMINF - 94.04, Department of Computing Science, Umea University,
                    418: *>      S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.
                    419: *>      To appear in Numerical Algorithms, 1996.
                    420: *> \n
                    421: *>  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
                    422: *>      for Solving the Generalized Sylvester Equation and Estimating the
                    423: *>      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
                    424: *>      Department of Computing Science, Umea University, S-901 87 Umea,
                    425: *>      Sweden, December 1993, Revised April 1994, Also as LAPACK working
                    426: *>      Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
                    427: *>      1996.
                    428: *>
                    429: *  =====================================================================
1.1       bertrand  430:       SUBROUTINE ZTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
                    431:      $                   ALPHA, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF,
                    432:      $                   WORK, LWORK, IWORK, LIWORK, INFO )
                    433: *
1.21    ! bertrand  434: *  -- LAPACK computational routine --
1.1       bertrand  435: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    436: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    437: *
                    438: *     .. Scalar Arguments ..
                    439:       LOGICAL            WANTQ, WANTZ
                    440:       INTEGER            IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
                    441:      $                   M, N
                    442:       DOUBLE PRECISION   PL, PR
                    443: *     ..
                    444: *     .. Array Arguments ..
                    445:       LOGICAL            SELECT( * )
                    446:       INTEGER            IWORK( * )
                    447:       DOUBLE PRECISION   DIF( * )
                    448:       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
                    449:      $                   BETA( * ), Q( LDQ, * ), WORK( * ), Z( LDZ, * )
                    450: *     ..
                    451: *
                    452: *  =====================================================================
                    453: *
                    454: *     .. Parameters ..
                    455:       INTEGER            IDIFJB
                    456:       PARAMETER          ( IDIFJB = 3 )
                    457:       DOUBLE PRECISION   ZERO, ONE
                    458:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    459: *     ..
                    460: *     .. Local Scalars ..
                    461:       LOGICAL            LQUERY, SWAP, WANTD, WANTD1, WANTD2, WANTP
                    462:       INTEGER            I, IERR, IJB, K, KASE, KS, LIWMIN, LWMIN, MN2,
                    463:      $                   N1, N2
                    464:       DOUBLE PRECISION   DSCALE, DSUM, RDSCAL, SAFMIN
                    465:       COMPLEX*16         TEMP1, TEMP2
                    466: *     ..
                    467: *     .. Local Arrays ..
                    468:       INTEGER            ISAVE( 3 )
                    469: *     ..
                    470: *     .. External Subroutines ..
                    471:       EXTERNAL           XERBLA, ZLACN2, ZLACPY, ZLASSQ, ZSCAL, ZTGEXC,
                    472:      $                   ZTGSYL
                    473: *     ..
                    474: *     .. Intrinsic Functions ..
                    475:       INTRINSIC          ABS, DCMPLX, DCONJG, MAX, SQRT
                    476: *     ..
                    477: *     .. External Functions ..
                    478:       DOUBLE PRECISION   DLAMCH
                    479:       EXTERNAL           DLAMCH
                    480: *     ..
                    481: *     .. Executable Statements ..
                    482: *
                    483: *     Decode and test the input parameters
                    484: *
                    485:       INFO = 0
                    486:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    487: *
                    488:       IF( IJOB.LT.0 .OR. IJOB.GT.5 ) THEN
                    489:          INFO = -1
                    490:       ELSE IF( N.LT.0 ) THEN
                    491:          INFO = -5
                    492:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    493:          INFO = -7
                    494:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    495:          INFO = -9
                    496:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
                    497:          INFO = -13
                    498:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    499:          INFO = -15
                    500:       END IF
                    501: *
                    502:       IF( INFO.NE.0 ) THEN
                    503:          CALL XERBLA( 'ZTGSEN', -INFO )
                    504:          RETURN
                    505:       END IF
                    506: *
                    507:       IERR = 0
                    508: *
                    509:       WANTP = IJOB.EQ.1 .OR. IJOB.GE.4
                    510:       WANTD1 = IJOB.EQ.2 .OR. IJOB.EQ.4
                    511:       WANTD2 = IJOB.EQ.3 .OR. IJOB.EQ.5
                    512:       WANTD = WANTD1 .OR. WANTD2
                    513: *
                    514: *     Set M to the dimension of the specified pair of deflating
                    515: *     subspaces.
                    516: *
                    517:       M = 0
1.15      bertrand  518:       IF( .NOT.LQUERY .OR. IJOB.NE.0 ) THEN
1.1       bertrand  519:       DO 10 K = 1, N
                    520:          ALPHA( K ) = A( K, K )
                    521:          BETA( K ) = B( K, K )
                    522:          IF( K.LT.N ) THEN
                    523:             IF( SELECT( K ) )
                    524:      $         M = M + 1
                    525:          ELSE
                    526:             IF( SELECT( N ) )
                    527:      $         M = M + 1
                    528:          END IF
                    529:    10 CONTINUE
1.15      bertrand  530:       END IF
1.1       bertrand  531: *
                    532:       IF( IJOB.EQ.1 .OR. IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN
                    533:          LWMIN = MAX( 1, 2*M*( N-M ) )
                    534:          LIWMIN = MAX( 1, N+2 )
                    535:       ELSE IF( IJOB.EQ.3 .OR. IJOB.EQ.5 ) THEN
                    536:          LWMIN = MAX( 1, 4*M*( N-M ) )
                    537:          LIWMIN = MAX( 1, 2*M*( N-M ), N+2 )
                    538:       ELSE
                    539:          LWMIN = 1
                    540:          LIWMIN = 1
                    541:       END IF
                    542: *
                    543:       WORK( 1 ) = LWMIN
                    544:       IWORK( 1 ) = LIWMIN
                    545: *
                    546:       IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    547:          INFO = -21
                    548:       ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    549:          INFO = -23
                    550:       END IF
                    551: *
                    552:       IF( INFO.NE.0 ) THEN
                    553:          CALL XERBLA( 'ZTGSEN', -INFO )
                    554:          RETURN
                    555:       ELSE IF( LQUERY ) THEN
                    556:          RETURN
                    557:       END IF
                    558: *
                    559: *     Quick return if possible.
                    560: *
                    561:       IF( M.EQ.N .OR. M.EQ.0 ) THEN
                    562:          IF( WANTP ) THEN
                    563:             PL = ONE
                    564:             PR = ONE
                    565:          END IF
                    566:          IF( WANTD ) THEN
                    567:             DSCALE = ZERO
                    568:             DSUM = ONE
                    569:             DO 20 I = 1, N
                    570:                CALL ZLASSQ( N, A( 1, I ), 1, DSCALE, DSUM )
                    571:                CALL ZLASSQ( N, B( 1, I ), 1, DSCALE, DSUM )
                    572:    20       CONTINUE
                    573:             DIF( 1 ) = DSCALE*SQRT( DSUM )
                    574:             DIF( 2 ) = DIF( 1 )
                    575:          END IF
                    576:          GO TO 70
                    577:       END IF
                    578: *
                    579: *     Get machine constant
                    580: *
                    581:       SAFMIN = DLAMCH( 'S' )
                    582: *
                    583: *     Collect the selected blocks at the top-left corner of (A, B).
                    584: *
                    585:       KS = 0
                    586:       DO 30 K = 1, N
                    587:          SWAP = SELECT( K )
                    588:          IF( SWAP ) THEN
                    589:             KS = KS + 1
                    590: *
                    591: *           Swap the K-th block to position KS. Compute unitary Q
                    592: *           and Z that will swap adjacent diagonal blocks in (A, B).
                    593: *
                    594:             IF( K.NE.KS )
                    595:      $         CALL ZTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
                    596:      $                      LDZ, K, KS, IERR )
                    597: *
                    598:             IF( IERR.GT.0 ) THEN
                    599: *
                    600: *              Swap is rejected: exit.
                    601: *
                    602:                INFO = 1
                    603:                IF( WANTP ) THEN
                    604:                   PL = ZERO
                    605:                   PR = ZERO
                    606:                END IF
                    607:                IF( WANTD ) THEN
                    608:                   DIF( 1 ) = ZERO
                    609:                   DIF( 2 ) = ZERO
                    610:                END IF
                    611:                GO TO 70
                    612:             END IF
                    613:          END IF
                    614:    30 CONTINUE
                    615:       IF( WANTP ) THEN
                    616: *
                    617: *        Solve generalized Sylvester equation for R and L:
                    618: *                   A11 * R - L * A22 = A12
                    619: *                   B11 * R - L * B22 = B12
                    620: *
                    621:          N1 = M
                    622:          N2 = N - M
                    623:          I = N1 + 1
                    624:          CALL ZLACPY( 'Full', N1, N2, A( 1, I ), LDA, WORK, N1 )
                    625:          CALL ZLACPY( 'Full', N1, N2, B( 1, I ), LDB, WORK( N1*N2+1 ),
                    626:      $                N1 )
                    627:          IJB = 0
                    628:          CALL ZTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
                    629:      $                N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ), N1,
                    630:      $                DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ),
                    631:      $                LWORK-2*N1*N2, IWORK, IERR )
                    632: *
                    633: *        Estimate the reciprocal of norms of "projections" onto
                    634: *        left and right eigenspaces
                    635: *
                    636:          RDSCAL = ZERO
                    637:          DSUM = ONE
                    638:          CALL ZLASSQ( N1*N2, WORK, 1, RDSCAL, DSUM )
                    639:          PL = RDSCAL*SQRT( DSUM )
                    640:          IF( PL.EQ.ZERO ) THEN
                    641:             PL = ONE
                    642:          ELSE
                    643:             PL = DSCALE / ( SQRT( DSCALE*DSCALE / PL+PL )*SQRT( PL ) )
                    644:          END IF
                    645:          RDSCAL = ZERO
                    646:          DSUM = ONE
                    647:          CALL ZLASSQ( N1*N2, WORK( N1*N2+1 ), 1, RDSCAL, DSUM )
                    648:          PR = RDSCAL*SQRT( DSUM )
                    649:          IF( PR.EQ.ZERO ) THEN
                    650:             PR = ONE
                    651:          ELSE
                    652:             PR = DSCALE / ( SQRT( DSCALE*DSCALE / PR+PR )*SQRT( PR ) )
                    653:          END IF
                    654:       END IF
                    655:       IF( WANTD ) THEN
                    656: *
                    657: *        Compute estimates Difu and Difl.
                    658: *
                    659:          IF( WANTD1 ) THEN
                    660:             N1 = M
                    661:             N2 = N - M
                    662:             I = N1 + 1
                    663:             IJB = IDIFJB
                    664: *
                    665: *           Frobenius norm-based Difu estimate.
                    666: *
                    667:             CALL ZTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
                    668:      $                   N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ),
                    669:      $                   N1, DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ),
                    670:      $                   LWORK-2*N1*N2, IWORK, IERR )
                    671: *
                    672: *           Frobenius norm-based Difl estimate.
                    673: *
                    674:             CALL ZTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA, WORK,
                    675:      $                   N2, B( I, I ), LDB, B, LDB, WORK( N1*N2+1 ),
                    676:      $                   N2, DSCALE, DIF( 2 ), WORK( N1*N2*2+1 ),
                    677:      $                   LWORK-2*N1*N2, IWORK, IERR )
                    678:          ELSE
                    679: *
                    680: *           Compute 1-norm-based estimates of Difu and Difl using
                    681: *           reversed communication with ZLACN2. In each step a
                    682: *           generalized Sylvester equation or a transposed variant
                    683: *           is solved.
                    684: *
                    685:             KASE = 0
                    686:             N1 = M
                    687:             N2 = N - M
                    688:             I = N1 + 1
                    689:             IJB = 0
                    690:             MN2 = 2*N1*N2
                    691: *
                    692: *           1-norm-based estimate of Difu.
                    693: *
                    694:    40       CONTINUE
                    695:             CALL ZLACN2( MN2, WORK( MN2+1 ), WORK, DIF( 1 ), KASE,
                    696:      $                   ISAVE )
                    697:             IF( KASE.NE.0 ) THEN
                    698:                IF( KASE.EQ.1 ) THEN
                    699: *
                    700: *                 Solve generalized Sylvester equation
                    701: *
                    702:                   CALL ZTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA,
                    703:      $                         WORK, N1, B, LDB, B( I, I ), LDB,
                    704:      $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
                    705:      $                         WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
                    706:      $                         IERR )
                    707:                ELSE
                    708: *
                    709: *                 Solve the transposed variant.
                    710: *
                    711:                   CALL ZTGSYL( 'C', IJB, N1, N2, A, LDA, A( I, I ), LDA,
                    712:      $                         WORK, N1, B, LDB, B( I, I ), LDB,
                    713:      $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
                    714:      $                         WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
                    715:      $                         IERR )
                    716:                END IF
                    717:                GO TO 40
                    718:             END IF
                    719:             DIF( 1 ) = DSCALE / DIF( 1 )
                    720: *
                    721: *           1-norm-based estimate of Difl.
                    722: *
                    723:    50       CONTINUE
                    724:             CALL ZLACN2( MN2, WORK( MN2+1 ), WORK, DIF( 2 ), KASE,
                    725:      $                   ISAVE )
                    726:             IF( KASE.NE.0 ) THEN
                    727:                IF( KASE.EQ.1 ) THEN
                    728: *
                    729: *                 Solve generalized Sylvester equation
                    730: *
                    731:                   CALL ZTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA,
                    732:      $                         WORK, N2, B( I, I ), LDB, B, LDB,
                    733:      $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
                    734:      $                         WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
                    735:      $                         IERR )
                    736:                ELSE
                    737: *
                    738: *                 Solve the transposed variant.
                    739: *
                    740:                   CALL ZTGSYL( 'C', IJB, N2, N1, A( I, I ), LDA, A, LDA,
                    741:      $                         WORK, N2, B, LDB, B( I, I ), LDB,
                    742:      $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
                    743:      $                         WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
                    744:      $                         IERR )
                    745:                END IF
                    746:                GO TO 50
                    747:             END IF
                    748:             DIF( 2 ) = DSCALE / DIF( 2 )
                    749:          END IF
                    750:       END IF
                    751: *
                    752: *     If B(K,K) is complex, make it real and positive (normalization
                    753: *     of the generalized Schur form) and Store the generalized
                    754: *     eigenvalues of reordered pair (A, B)
                    755: *
                    756:       DO 60 K = 1, N
                    757:          DSCALE = ABS( B( K, K ) )
                    758:          IF( DSCALE.GT.SAFMIN ) THEN
                    759:             TEMP1 = DCONJG( B( K, K ) / DSCALE )
                    760:             TEMP2 = B( K, K ) / DSCALE
                    761:             B( K, K ) = DSCALE
                    762:             CALL ZSCAL( N-K, TEMP1, B( K, K+1 ), LDB )
                    763:             CALL ZSCAL( N-K+1, TEMP1, A( K, K ), LDA )
                    764:             IF( WANTQ )
                    765:      $         CALL ZSCAL( N, TEMP2, Q( 1, K ), 1 )
                    766:          ELSE
                    767:             B( K, K ) = DCMPLX( ZERO, ZERO )
                    768:          END IF
                    769: *
                    770:          ALPHA( K ) = A( K, K )
                    771:          BETA( K ) = B( K, K )
                    772: *
                    773:    60 CONTINUE
                    774: *
                    775:    70 CONTINUE
                    776: *
                    777:       WORK( 1 ) = LWMIN
                    778:       IWORK( 1 ) = LIWMIN
                    779: *
                    780:       RETURN
                    781: *
                    782: *     End of ZTGSEN
                    783: *
                    784:       END

CVSweb interface <joel.bertrand@systella.fr>