Annotation of rpl/lapack/lapack/ztgsen.f, revision 1.10

1.10    ! bertrand    1: *> \brief \b ZTGSEN
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZTGSEN + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztgsen.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztgsen.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztgsen.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
        !            22: *                          ALPHA, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF,
        !            23: *                          WORK, LWORK, IWORK, LIWORK, INFO )
        !            24: * 
        !            25: *       .. Scalar Arguments ..
        !            26: *       LOGICAL            WANTQ, WANTZ
        !            27: *       INTEGER            IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
        !            28: *      $                   M, N
        !            29: *       DOUBLE PRECISION   PL, PR
        !            30: *       ..
        !            31: *       .. Array Arguments ..
        !            32: *       LOGICAL            SELECT( * )
        !            33: *       INTEGER            IWORK( * )
        !            34: *       DOUBLE PRECISION   DIF( * )
        !            35: *       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
        !            36: *      $                   BETA( * ), Q( LDQ, * ), WORK( * ), Z( LDZ, * )
        !            37: *       ..
        !            38: *  
        !            39: *
        !            40: *> \par Purpose:
        !            41: *  =============
        !            42: *>
        !            43: *> \verbatim
        !            44: *>
        !            45: *> ZTGSEN reorders the generalized Schur decomposition of a complex
        !            46: *> matrix pair (A, B) (in terms of an unitary equivalence trans-
        !            47: *> formation Q**H * (A, B) * Z), so that a selected cluster of eigenvalues
        !            48: *> appears in the leading diagonal blocks of the pair (A,B). The leading
        !            49: *> columns of Q and Z form unitary bases of the corresponding left and
        !            50: *> right eigenspaces (deflating subspaces). (A, B) must be in
        !            51: *> generalized Schur canonical form, that is, A and B are both upper
        !            52: *> triangular.
        !            53: *>
        !            54: *> ZTGSEN also computes the generalized eigenvalues
        !            55: *>
        !            56: *>          w(j)= ALPHA(j) / BETA(j)
        !            57: *>
        !            58: *> of the reordered matrix pair (A, B).
        !            59: *>
        !            60: *> Optionally, the routine computes estimates of reciprocal condition
        !            61: *> numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
        !            62: *> (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
        !            63: *> between the matrix pairs (A11, B11) and (A22,B22) that correspond to
        !            64: *> the selected cluster and the eigenvalues outside the cluster, resp.,
        !            65: *> and norms of "projections" onto left and right eigenspaces w.r.t.
        !            66: *> the selected cluster in the (1,1)-block.
        !            67: *>
        !            68: *> \endverbatim
        !            69: *
        !            70: *  Arguments:
        !            71: *  ==========
        !            72: *
        !            73: *> \param[in] IJOB
        !            74: *> \verbatim
        !            75: *>          IJOB is integer
        !            76: *>          Specifies whether condition numbers are required for the
        !            77: *>          cluster of eigenvalues (PL and PR) or the deflating subspaces
        !            78: *>          (Difu and Difl):
        !            79: *>           =0: Only reorder w.r.t. SELECT. No extras.
        !            80: *>           =1: Reciprocal of norms of "projections" onto left and right
        !            81: *>               eigenspaces w.r.t. the selected cluster (PL and PR).
        !            82: *>           =2: Upper bounds on Difu and Difl. F-norm-based estimate
        !            83: *>               (DIF(1:2)).
        !            84: *>           =3: Estimate of Difu and Difl. 1-norm-based estimate
        !            85: *>               (DIF(1:2)).
        !            86: *>               About 5 times as expensive as IJOB = 2.
        !            87: *>           =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
        !            88: *>               version to get it all.
        !            89: *>           =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)
        !            90: *> \endverbatim
        !            91: *>
        !            92: *> \param[in] WANTQ
        !            93: *> \verbatim
        !            94: *>          WANTQ is LOGICAL
        !            95: *>          .TRUE. : update the left transformation matrix Q;
        !            96: *>          .FALSE.: do not update Q.
        !            97: *> \endverbatim
        !            98: *>
        !            99: *> \param[in] WANTZ
        !           100: *> \verbatim
        !           101: *>          WANTZ is LOGICAL
        !           102: *>          .TRUE. : update the right transformation matrix Z;
        !           103: *>          .FALSE.: do not update Z.
        !           104: *> \endverbatim
        !           105: *>
        !           106: *> \param[in] SELECT
        !           107: *> \verbatim
        !           108: *>          SELECT is LOGICAL array, dimension (N)
        !           109: *>          SELECT specifies the eigenvalues in the selected cluster. To
        !           110: *>          select an eigenvalue w(j), SELECT(j) must be set to
        !           111: *>          .TRUE..
        !           112: *> \endverbatim
        !           113: *>
        !           114: *> \param[in] N
        !           115: *> \verbatim
        !           116: *>          N is INTEGER
        !           117: *>          The order of the matrices A and B. N >= 0.
        !           118: *> \endverbatim
        !           119: *>
        !           120: *> \param[in,out] A
        !           121: *> \verbatim
        !           122: *>          A is COMPLEX*16 array, dimension(LDA,N)
        !           123: *>          On entry, the upper triangular matrix A, in generalized
        !           124: *>          Schur canonical form.
        !           125: *>          On exit, A is overwritten by the reordered matrix A.
        !           126: *> \endverbatim
        !           127: *>
        !           128: *> \param[in] LDA
        !           129: *> \verbatim
        !           130: *>          LDA is INTEGER
        !           131: *>          The leading dimension of the array A. LDA >= max(1,N).
        !           132: *> \endverbatim
        !           133: *>
        !           134: *> \param[in,out] B
        !           135: *> \verbatim
        !           136: *>          B is COMPLEX*16 array, dimension(LDB,N)
        !           137: *>          On entry, the upper triangular matrix B, in generalized
        !           138: *>          Schur canonical form.
        !           139: *>          On exit, B is overwritten by the reordered matrix B.
        !           140: *> \endverbatim
        !           141: *>
        !           142: *> \param[in] LDB
        !           143: *> \verbatim
        !           144: *>          LDB is INTEGER
        !           145: *>          The leading dimension of the array B. LDB >= max(1,N).
        !           146: *> \endverbatim
        !           147: *>
        !           148: *> \param[out] ALPHA
        !           149: *> \verbatim
        !           150: *>          ALPHA is COMPLEX*16 array, dimension (N)
        !           151: *> \endverbatim
        !           152: *>
        !           153: *> \param[out] BETA
        !           154: *> \verbatim
        !           155: *>          BETA is COMPLEX*16 array, dimension (N)
        !           156: *>
        !           157: *>          The diagonal elements of A and B, respectively,
        !           158: *>          when the pair (A,B) has been reduced to generalized Schur
        !           159: *>          form.  ALPHA(i)/BETA(i) i=1,...,N are the generalized
        !           160: *>          eigenvalues.
        !           161: *> \endverbatim
        !           162: *>
        !           163: *> \param[in,out] Q
        !           164: *> \verbatim
        !           165: *>          Q is COMPLEX*16 array, dimension (LDQ,N)
        !           166: *>          On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
        !           167: *>          On exit, Q has been postmultiplied by the left unitary
        !           168: *>          transformation matrix which reorder (A, B); The leading M
        !           169: *>          columns of Q form orthonormal bases for the specified pair of
        !           170: *>          left eigenspaces (deflating subspaces).
        !           171: *>          If WANTQ = .FALSE., Q is not referenced.
        !           172: *> \endverbatim
        !           173: *>
        !           174: *> \param[in] LDQ
        !           175: *> \verbatim
        !           176: *>          LDQ is INTEGER
        !           177: *>          The leading dimension of the array Q. LDQ >= 1.
        !           178: *>          If WANTQ = .TRUE., LDQ >= N.
        !           179: *> \endverbatim
        !           180: *>
        !           181: *> \param[in,out] Z
        !           182: *> \verbatim
        !           183: *>          Z is COMPLEX*16 array, dimension (LDZ,N)
        !           184: *>          On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
        !           185: *>          On exit, Z has been postmultiplied by the left unitary
        !           186: *>          transformation matrix which reorder (A, B); The leading M
        !           187: *>          columns of Z form orthonormal bases for the specified pair of
        !           188: *>          left eigenspaces (deflating subspaces).
        !           189: *>          If WANTZ = .FALSE., Z is not referenced.
        !           190: *> \endverbatim
        !           191: *>
        !           192: *> \param[in] LDZ
        !           193: *> \verbatim
        !           194: *>          LDZ is INTEGER
        !           195: *>          The leading dimension of the array Z. LDZ >= 1.
        !           196: *>          If WANTZ = .TRUE., LDZ >= N.
        !           197: *> \endverbatim
        !           198: *>
        !           199: *> \param[out] M
        !           200: *> \verbatim
        !           201: *>          M is INTEGER
        !           202: *>          The dimension of the specified pair of left and right
        !           203: *>          eigenspaces, (deflating subspaces) 0 <= M <= N.
        !           204: *> \endverbatim
        !           205: *>
        !           206: *> \param[out] PL
        !           207: *> \verbatim
        !           208: *>          PL is DOUBLE PRECISION
        !           209: *> \endverbatim
        !           210: *>
        !           211: *> \param[out] PR
        !           212: *> \verbatim
        !           213: *>          PR is DOUBLE PRECISION
        !           214: *>
        !           215: *>          If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
        !           216: *>          reciprocal  of the norm of "projections" onto left and right
        !           217: *>          eigenspace with respect to the selected cluster.
        !           218: *>          0 < PL, PR <= 1.
        !           219: *>          If M = 0 or M = N, PL = PR  = 1.
        !           220: *>          If IJOB = 0, 2 or 3 PL, PR are not referenced.
        !           221: *> \endverbatim
        !           222: *>
        !           223: *> \param[out] DIF
        !           224: *> \verbatim
        !           225: *>          DIF is DOUBLE PRECISION array, dimension (2).
        !           226: *>          If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
        !           227: *>          If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
        !           228: *>          Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
        !           229: *>          estimates of Difu and Difl, computed using reversed
        !           230: *>          communication with ZLACN2.
        !           231: *>          If M = 0 or N, DIF(1:2) = F-norm([A, B]).
        !           232: *>          If IJOB = 0 or 1, DIF is not referenced.
        !           233: *> \endverbatim
        !           234: *>
        !           235: *> \param[out] WORK
        !           236: *> \verbatim
        !           237: *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           238: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           239: *> \endverbatim
        !           240: *>
        !           241: *> \param[in] LWORK
        !           242: *> \verbatim
        !           243: *>          LWORK is INTEGER
        !           244: *>          The dimension of the array WORK. LWORK >=  1
        !           245: *>          If IJOB = 1, 2 or 4, LWORK >=  2*M*(N-M)
        !           246: *>          If IJOB = 3 or 5, LWORK >=  4*M*(N-M)
        !           247: *>
        !           248: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           249: *>          only calculates the optimal size of the WORK array, returns
        !           250: *>          this value as the first entry of the WORK array, and no error
        !           251: *>          message related to LWORK is issued by XERBLA.
        !           252: *> \endverbatim
        !           253: *>
        !           254: *> \param[out] IWORK
        !           255: *> \verbatim
        !           256: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
        !           257: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
        !           258: *> \endverbatim
        !           259: *>
        !           260: *> \param[in] LIWORK
        !           261: *> \verbatim
        !           262: *>          LIWORK is INTEGER
        !           263: *>          The dimension of the array IWORK. LIWORK >= 1.
        !           264: *>          If IJOB = 1, 2 or 4, LIWORK >=  N+2;
        !           265: *>          If IJOB = 3 or 5, LIWORK >= MAX(N+2, 2*M*(N-M));
        !           266: *>
        !           267: *>          If LIWORK = -1, then a workspace query is assumed; the
        !           268: *>          routine only calculates the optimal size of the IWORK array,
        !           269: *>          returns this value as the first entry of the IWORK array, and
        !           270: *>          no error message related to LIWORK is issued by XERBLA.
        !           271: *> \endverbatim
        !           272: *>
        !           273: *> \param[out] INFO
        !           274: *> \verbatim
        !           275: *>          INFO is INTEGER
        !           276: *>            =0: Successful exit.
        !           277: *>            <0: If INFO = -i, the i-th argument had an illegal value.
        !           278: *>            =1: Reordering of (A, B) failed because the transformed
        !           279: *>                matrix pair (A, B) would be too far from generalized
        !           280: *>                Schur form; the problem is very ill-conditioned.
        !           281: *>                (A, B) may have been partially reordered.
        !           282: *>                If requested, 0 is returned in DIF(*), PL and PR.
        !           283: *> \endverbatim
        !           284: *
        !           285: *  Authors:
        !           286: *  ========
        !           287: *
        !           288: *> \author Univ. of Tennessee 
        !           289: *> \author Univ. of California Berkeley 
        !           290: *> \author Univ. of Colorado Denver 
        !           291: *> \author NAG Ltd. 
        !           292: *
        !           293: *> \date November 2011
        !           294: *
        !           295: *> \ingroup complex16OTHERcomputational
        !           296: *
        !           297: *> \par Further Details:
        !           298: *  =====================
        !           299: *>
        !           300: *> \verbatim
        !           301: *>
        !           302: *>  ZTGSEN first collects the selected eigenvalues by computing unitary
        !           303: *>  U and W that move them to the top left corner of (A, B). In other
        !           304: *>  words, the selected eigenvalues are the eigenvalues of (A11, B11) in
        !           305: *>
        !           306: *>              U**H*(A, B)*W = (A11 A12) (B11 B12) n1
        !           307: *>                              ( 0  A22),( 0  B22) n2
        !           308: *>                                n1  n2    n1  n2
        !           309: *>
        !           310: *>  where N = n1+n2 and U**H means the conjugate transpose of U. The first
        !           311: *>  n1 columns of U and W span the specified pair of left and right
        !           312: *>  eigenspaces (deflating subspaces) of (A, B).
        !           313: *>
        !           314: *>  If (A, B) has been obtained from the generalized real Schur
        !           315: *>  decomposition of a matrix pair (C, D) = Q*(A, B)*Z**H, then the
        !           316: *>  reordered generalized Schur form of (C, D) is given by
        !           317: *>
        !           318: *>           (C, D) = (Q*U)*(U**H *(A, B)*W)*(Z*W)**H,
        !           319: *>
        !           320: *>  and the first n1 columns of Q*U and Z*W span the corresponding
        !           321: *>  deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
        !           322: *>
        !           323: *>  Note that if the selected eigenvalue is sufficiently ill-conditioned,
        !           324: *>  then its value may differ significantly from its value before
        !           325: *>  reordering.
        !           326: *>
        !           327: *>  The reciprocal condition numbers of the left and right eigenspaces
        !           328: *>  spanned by the first n1 columns of U and W (or Q*U and Z*W) may
        !           329: *>  be returned in DIF(1:2), corresponding to Difu and Difl, resp.
        !           330: *>
        !           331: *>  The Difu and Difl are defined as:
        !           332: *>
        !           333: *>       Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
        !           334: *>  and
        !           335: *>       Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
        !           336: *>
        !           337: *>  where sigma-min(Zu) is the smallest singular value of the
        !           338: *>  (2*n1*n2)-by-(2*n1*n2) matrix
        !           339: *>
        !           340: *>       Zu = [ kron(In2, A11)  -kron(A22**H, In1) ]
        !           341: *>            [ kron(In2, B11)  -kron(B22**H, In1) ].
        !           342: *>
        !           343: *>  Here, Inx is the identity matrix of size nx and A22**H is the
        !           344: *>  conjugate transpose of A22. kron(X, Y) is the Kronecker product between
        !           345: *>  the matrices X and Y.
        !           346: *>
        !           347: *>  When DIF(2) is small, small changes in (A, B) can cause large changes
        !           348: *>  in the deflating subspace. An approximate (asymptotic) bound on the
        !           349: *>  maximum angular error in the computed deflating subspaces is
        !           350: *>
        !           351: *>       EPS * norm((A, B)) / DIF(2),
        !           352: *>
        !           353: *>  where EPS is the machine precision.
        !           354: *>
        !           355: *>  The reciprocal norm of the projectors on the left and right
        !           356: *>  eigenspaces associated with (A11, B11) may be returned in PL and PR.
        !           357: *>  They are computed as follows. First we compute L and R so that
        !           358: *>  P*(A, B)*Q is block diagonal, where
        !           359: *>
        !           360: *>       P = ( I -L ) n1           Q = ( I R ) n1
        !           361: *>           ( 0  I ) n2    and        ( 0 I ) n2
        !           362: *>             n1 n2                    n1 n2
        !           363: *>
        !           364: *>  and (L, R) is the solution to the generalized Sylvester equation
        !           365: *>
        !           366: *>       A11*R - L*A22 = -A12
        !           367: *>       B11*R - L*B22 = -B12
        !           368: *>
        !           369: *>  Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
        !           370: *>  An approximate (asymptotic) bound on the average absolute error of
        !           371: *>  the selected eigenvalues is
        !           372: *>
        !           373: *>       EPS * norm((A, B)) / PL.
        !           374: *>
        !           375: *>  There are also global error bounds which valid for perturbations up
        !           376: *>  to a certain restriction:  A lower bound (x) on the smallest
        !           377: *>  F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
        !           378: *>  coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
        !           379: *>  (i.e. (A + E, B + F), is
        !           380: *>
        !           381: *>   x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
        !           382: *>
        !           383: *>  An approximate bound on x can be computed from DIF(1:2), PL and PR.
        !           384: *>
        !           385: *>  If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
        !           386: *>  (L', R') and unperturbed (L, R) left and right deflating subspaces
        !           387: *>  associated with the selected cluster in the (1,1)-blocks can be
        !           388: *>  bounded as
        !           389: *>
        !           390: *>   max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
        !           391: *>   max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
        !           392: *>
        !           393: *>  See LAPACK User's Guide section 4.11 or the following references
        !           394: *>  for more information.
        !           395: *>
        !           396: *>  Note that if the default method for computing the Frobenius-norm-
        !           397: *>  based estimate DIF is not wanted (see ZLATDF), then the parameter
        !           398: *>  IDIFJB (see below) should be changed from 3 to 4 (routine ZLATDF
        !           399: *>  (IJOB = 2 will be used)). See ZTGSYL for more details.
        !           400: *> \endverbatim
        !           401: *
        !           402: *> \par Contributors:
        !           403: *  ==================
        !           404: *>
        !           405: *>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
        !           406: *>     Umea University, S-901 87 Umea, Sweden.
        !           407: *
        !           408: *> \par References:
        !           409: *  ================
        !           410: *>
        !           411: *>  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
        !           412: *>      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
        !           413: *>      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
        !           414: *>      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
        !           415: *> \n
        !           416: *>  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
        !           417: *>      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
        !           418: *>      Estimation: Theory, Algorithms and Software, Report
        !           419: *>      UMINF - 94.04, Department of Computing Science, Umea University,
        !           420: *>      S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.
        !           421: *>      To appear in Numerical Algorithms, 1996.
        !           422: *> \n
        !           423: *>  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
        !           424: *>      for Solving the Generalized Sylvester Equation and Estimating the
        !           425: *>      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
        !           426: *>      Department of Computing Science, Umea University, S-901 87 Umea,
        !           427: *>      Sweden, December 1993, Revised April 1994, Also as LAPACK working
        !           428: *>      Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
        !           429: *>      1996.
        !           430: *>
        !           431: *  =====================================================================
1.1       bertrand  432:       SUBROUTINE ZTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
                    433:      $                   ALPHA, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF,
                    434:      $                   WORK, LWORK, IWORK, LIWORK, INFO )
                    435: *
1.10    ! bertrand  436: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  437: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    438: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.10    ! bertrand  439: *     November 2011
1.1       bertrand  440: *
                    441: *     .. Scalar Arguments ..
                    442:       LOGICAL            WANTQ, WANTZ
                    443:       INTEGER            IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
                    444:      $                   M, N
                    445:       DOUBLE PRECISION   PL, PR
                    446: *     ..
                    447: *     .. Array Arguments ..
                    448:       LOGICAL            SELECT( * )
                    449:       INTEGER            IWORK( * )
                    450:       DOUBLE PRECISION   DIF( * )
                    451:       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
                    452:      $                   BETA( * ), Q( LDQ, * ), WORK( * ), Z( LDZ, * )
                    453: *     ..
                    454: *
                    455: *  =====================================================================
                    456: *
                    457: *     .. Parameters ..
                    458:       INTEGER            IDIFJB
                    459:       PARAMETER          ( IDIFJB = 3 )
                    460:       DOUBLE PRECISION   ZERO, ONE
                    461:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    462: *     ..
                    463: *     .. Local Scalars ..
                    464:       LOGICAL            LQUERY, SWAP, WANTD, WANTD1, WANTD2, WANTP
                    465:       INTEGER            I, IERR, IJB, K, KASE, KS, LIWMIN, LWMIN, MN2,
                    466:      $                   N1, N2
                    467:       DOUBLE PRECISION   DSCALE, DSUM, RDSCAL, SAFMIN
                    468:       COMPLEX*16         TEMP1, TEMP2
                    469: *     ..
                    470: *     .. Local Arrays ..
                    471:       INTEGER            ISAVE( 3 )
                    472: *     ..
                    473: *     .. External Subroutines ..
                    474:       EXTERNAL           XERBLA, ZLACN2, ZLACPY, ZLASSQ, ZSCAL, ZTGEXC,
                    475:      $                   ZTGSYL
                    476: *     ..
                    477: *     .. Intrinsic Functions ..
                    478:       INTRINSIC          ABS, DCMPLX, DCONJG, MAX, SQRT
                    479: *     ..
                    480: *     .. External Functions ..
                    481:       DOUBLE PRECISION   DLAMCH
                    482:       EXTERNAL           DLAMCH
                    483: *     ..
                    484: *     .. Executable Statements ..
                    485: *
                    486: *     Decode and test the input parameters
                    487: *
                    488:       INFO = 0
                    489:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
                    490: *
                    491:       IF( IJOB.LT.0 .OR. IJOB.GT.5 ) THEN
                    492:          INFO = -1
                    493:       ELSE IF( N.LT.0 ) THEN
                    494:          INFO = -5
                    495:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    496:          INFO = -7
                    497:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    498:          INFO = -9
                    499:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
                    500:          INFO = -13
                    501:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
                    502:          INFO = -15
                    503:       END IF
                    504: *
                    505:       IF( INFO.NE.0 ) THEN
                    506:          CALL XERBLA( 'ZTGSEN', -INFO )
                    507:          RETURN
                    508:       END IF
                    509: *
                    510:       IERR = 0
                    511: *
                    512:       WANTP = IJOB.EQ.1 .OR. IJOB.GE.4
                    513:       WANTD1 = IJOB.EQ.2 .OR. IJOB.EQ.4
                    514:       WANTD2 = IJOB.EQ.3 .OR. IJOB.EQ.5
                    515:       WANTD = WANTD1 .OR. WANTD2
                    516: *
                    517: *     Set M to the dimension of the specified pair of deflating
                    518: *     subspaces.
                    519: *
                    520:       M = 0
                    521:       DO 10 K = 1, N
                    522:          ALPHA( K ) = A( K, K )
                    523:          BETA( K ) = B( K, K )
                    524:          IF( K.LT.N ) THEN
                    525:             IF( SELECT( K ) )
                    526:      $         M = M + 1
                    527:          ELSE
                    528:             IF( SELECT( N ) )
                    529:      $         M = M + 1
                    530:          END IF
                    531:    10 CONTINUE
                    532: *
                    533:       IF( IJOB.EQ.1 .OR. IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN
                    534:          LWMIN = MAX( 1, 2*M*( N-M ) )
                    535:          LIWMIN = MAX( 1, N+2 )
                    536:       ELSE IF( IJOB.EQ.3 .OR. IJOB.EQ.5 ) THEN
                    537:          LWMIN = MAX( 1, 4*M*( N-M ) )
                    538:          LIWMIN = MAX( 1, 2*M*( N-M ), N+2 )
                    539:       ELSE
                    540:          LWMIN = 1
                    541:          LIWMIN = 1
                    542:       END IF
                    543: *
                    544:       WORK( 1 ) = LWMIN
                    545:       IWORK( 1 ) = LIWMIN
                    546: *
                    547:       IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    548:          INFO = -21
                    549:       ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    550:          INFO = -23
                    551:       END IF
                    552: *
                    553:       IF( INFO.NE.0 ) THEN
                    554:          CALL XERBLA( 'ZTGSEN', -INFO )
                    555:          RETURN
                    556:       ELSE IF( LQUERY ) THEN
                    557:          RETURN
                    558:       END IF
                    559: *
                    560: *     Quick return if possible.
                    561: *
                    562:       IF( M.EQ.N .OR. M.EQ.0 ) THEN
                    563:          IF( WANTP ) THEN
                    564:             PL = ONE
                    565:             PR = ONE
                    566:          END IF
                    567:          IF( WANTD ) THEN
                    568:             DSCALE = ZERO
                    569:             DSUM = ONE
                    570:             DO 20 I = 1, N
                    571:                CALL ZLASSQ( N, A( 1, I ), 1, DSCALE, DSUM )
                    572:                CALL ZLASSQ( N, B( 1, I ), 1, DSCALE, DSUM )
                    573:    20       CONTINUE
                    574:             DIF( 1 ) = DSCALE*SQRT( DSUM )
                    575:             DIF( 2 ) = DIF( 1 )
                    576:          END IF
                    577:          GO TO 70
                    578:       END IF
                    579: *
                    580: *     Get machine constant
                    581: *
                    582:       SAFMIN = DLAMCH( 'S' )
                    583: *
                    584: *     Collect the selected blocks at the top-left corner of (A, B).
                    585: *
                    586:       KS = 0
                    587:       DO 30 K = 1, N
                    588:          SWAP = SELECT( K )
                    589:          IF( SWAP ) THEN
                    590:             KS = KS + 1
                    591: *
                    592: *           Swap the K-th block to position KS. Compute unitary Q
                    593: *           and Z that will swap adjacent diagonal blocks in (A, B).
                    594: *
                    595:             IF( K.NE.KS )
                    596:      $         CALL ZTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
                    597:      $                      LDZ, K, KS, IERR )
                    598: *
                    599:             IF( IERR.GT.0 ) THEN
                    600: *
                    601: *              Swap is rejected: exit.
                    602: *
                    603:                INFO = 1
                    604:                IF( WANTP ) THEN
                    605:                   PL = ZERO
                    606:                   PR = ZERO
                    607:                END IF
                    608:                IF( WANTD ) THEN
                    609:                   DIF( 1 ) = ZERO
                    610:                   DIF( 2 ) = ZERO
                    611:                END IF
                    612:                GO TO 70
                    613:             END IF
                    614:          END IF
                    615:    30 CONTINUE
                    616:       IF( WANTP ) THEN
                    617: *
                    618: *        Solve generalized Sylvester equation for R and L:
                    619: *                   A11 * R - L * A22 = A12
                    620: *                   B11 * R - L * B22 = B12
                    621: *
                    622:          N1 = M
                    623:          N2 = N - M
                    624:          I = N1 + 1
                    625:          CALL ZLACPY( 'Full', N1, N2, A( 1, I ), LDA, WORK, N1 )
                    626:          CALL ZLACPY( 'Full', N1, N2, B( 1, I ), LDB, WORK( N1*N2+1 ),
                    627:      $                N1 )
                    628:          IJB = 0
                    629:          CALL ZTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
                    630:      $                N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ), N1,
                    631:      $                DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ),
                    632:      $                LWORK-2*N1*N2, IWORK, IERR )
                    633: *
                    634: *        Estimate the reciprocal of norms of "projections" onto
                    635: *        left and right eigenspaces
                    636: *
                    637:          RDSCAL = ZERO
                    638:          DSUM = ONE
                    639:          CALL ZLASSQ( N1*N2, WORK, 1, RDSCAL, DSUM )
                    640:          PL = RDSCAL*SQRT( DSUM )
                    641:          IF( PL.EQ.ZERO ) THEN
                    642:             PL = ONE
                    643:          ELSE
                    644:             PL = DSCALE / ( SQRT( DSCALE*DSCALE / PL+PL )*SQRT( PL ) )
                    645:          END IF
                    646:          RDSCAL = ZERO
                    647:          DSUM = ONE
                    648:          CALL ZLASSQ( N1*N2, WORK( N1*N2+1 ), 1, RDSCAL, DSUM )
                    649:          PR = RDSCAL*SQRT( DSUM )
                    650:          IF( PR.EQ.ZERO ) THEN
                    651:             PR = ONE
                    652:          ELSE
                    653:             PR = DSCALE / ( SQRT( DSCALE*DSCALE / PR+PR )*SQRT( PR ) )
                    654:          END IF
                    655:       END IF
                    656:       IF( WANTD ) THEN
                    657: *
                    658: *        Compute estimates Difu and Difl.
                    659: *
                    660:          IF( WANTD1 ) THEN
                    661:             N1 = M
                    662:             N2 = N - M
                    663:             I = N1 + 1
                    664:             IJB = IDIFJB
                    665: *
                    666: *           Frobenius norm-based Difu estimate.
                    667: *
                    668:             CALL ZTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
                    669:      $                   N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ),
                    670:      $                   N1, DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ),
                    671:      $                   LWORK-2*N1*N2, IWORK, IERR )
                    672: *
                    673: *           Frobenius norm-based Difl estimate.
                    674: *
                    675:             CALL ZTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA, WORK,
                    676:      $                   N2, B( I, I ), LDB, B, LDB, WORK( N1*N2+1 ),
                    677:      $                   N2, DSCALE, DIF( 2 ), WORK( N1*N2*2+1 ),
                    678:      $                   LWORK-2*N1*N2, IWORK, IERR )
                    679:          ELSE
                    680: *
                    681: *           Compute 1-norm-based estimates of Difu and Difl using
                    682: *           reversed communication with ZLACN2. In each step a
                    683: *           generalized Sylvester equation or a transposed variant
                    684: *           is solved.
                    685: *
                    686:             KASE = 0
                    687:             N1 = M
                    688:             N2 = N - M
                    689:             I = N1 + 1
                    690:             IJB = 0
                    691:             MN2 = 2*N1*N2
                    692: *
                    693: *           1-norm-based estimate of Difu.
                    694: *
                    695:    40       CONTINUE
                    696:             CALL ZLACN2( MN2, WORK( MN2+1 ), WORK, DIF( 1 ), KASE,
                    697:      $                   ISAVE )
                    698:             IF( KASE.NE.0 ) THEN
                    699:                IF( KASE.EQ.1 ) THEN
                    700: *
                    701: *                 Solve generalized Sylvester equation
                    702: *
                    703:                   CALL ZTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA,
                    704:      $                         WORK, N1, B, LDB, B( I, I ), LDB,
                    705:      $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
                    706:      $                         WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
                    707:      $                         IERR )
                    708:                ELSE
                    709: *
                    710: *                 Solve the transposed variant.
                    711: *
                    712:                   CALL ZTGSYL( 'C', IJB, N1, N2, A, LDA, A( I, I ), LDA,
                    713:      $                         WORK, N1, B, LDB, B( I, I ), LDB,
                    714:      $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
                    715:      $                         WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
                    716:      $                         IERR )
                    717:                END IF
                    718:                GO TO 40
                    719:             END IF
                    720:             DIF( 1 ) = DSCALE / DIF( 1 )
                    721: *
                    722: *           1-norm-based estimate of Difl.
                    723: *
                    724:    50       CONTINUE
                    725:             CALL ZLACN2( MN2, WORK( MN2+1 ), WORK, DIF( 2 ), KASE,
                    726:      $                   ISAVE )
                    727:             IF( KASE.NE.0 ) THEN
                    728:                IF( KASE.EQ.1 ) THEN
                    729: *
                    730: *                 Solve generalized Sylvester equation
                    731: *
                    732:                   CALL ZTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA,
                    733:      $                         WORK, N2, B( I, I ), LDB, B, LDB,
                    734:      $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
                    735:      $                         WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
                    736:      $                         IERR )
                    737:                ELSE
                    738: *
                    739: *                 Solve the transposed variant.
                    740: *
                    741:                   CALL ZTGSYL( 'C', IJB, N2, N1, A( I, I ), LDA, A, LDA,
                    742:      $                         WORK, N2, B, LDB, B( I, I ), LDB,
                    743:      $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
                    744:      $                         WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
                    745:      $                         IERR )
                    746:                END IF
                    747:                GO TO 50
                    748:             END IF
                    749:             DIF( 2 ) = DSCALE / DIF( 2 )
                    750:          END IF
                    751:       END IF
                    752: *
                    753: *     If B(K,K) is complex, make it real and positive (normalization
                    754: *     of the generalized Schur form) and Store the generalized
                    755: *     eigenvalues of reordered pair (A, B)
                    756: *
                    757:       DO 60 K = 1, N
                    758:          DSCALE = ABS( B( K, K ) )
                    759:          IF( DSCALE.GT.SAFMIN ) THEN
                    760:             TEMP1 = DCONJG( B( K, K ) / DSCALE )
                    761:             TEMP2 = B( K, K ) / DSCALE
                    762:             B( K, K ) = DSCALE
                    763:             CALL ZSCAL( N-K, TEMP1, B( K, K+1 ), LDB )
                    764:             CALL ZSCAL( N-K+1, TEMP1, A( K, K ), LDA )
                    765:             IF( WANTQ )
                    766:      $         CALL ZSCAL( N, TEMP2, Q( 1, K ), 1 )
                    767:          ELSE
                    768:             B( K, K ) = DCMPLX( ZERO, ZERO )
                    769:          END IF
                    770: *
                    771:          ALPHA( K ) = A( K, K )
                    772:          BETA( K ) = B( K, K )
                    773: *
                    774:    60 CONTINUE
                    775: *
                    776:    70 CONTINUE
                    777: *
                    778:       WORK( 1 ) = LWMIN
                    779:       IWORK( 1 ) = LIWMIN
                    780: *
                    781:       RETURN
                    782: *
                    783: *     End of ZTGSEN
                    784: *
                    785:       END

CVSweb interface <joel.bertrand@systella.fr>