Annotation of rpl/lapack/lapack/ztgsen.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
        !             2:      $                   ALPHA, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF,
        !             3:      $                   WORK, LWORK, IWORK, LIWORK, INFO )
        !             4: *
        !             5: *  -- LAPACK routine (version 3.2) --
        !             6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             8: *     January 2007
        !             9: *
        !            10: *     Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH.
        !            11: *
        !            12: *     .. Scalar Arguments ..
        !            13:       LOGICAL            WANTQ, WANTZ
        !            14:       INTEGER            IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
        !            15:      $                   M, N
        !            16:       DOUBLE PRECISION   PL, PR
        !            17: *     ..
        !            18: *     .. Array Arguments ..
        !            19:       LOGICAL            SELECT( * )
        !            20:       INTEGER            IWORK( * )
        !            21:       DOUBLE PRECISION   DIF( * )
        !            22:       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
        !            23:      $                   BETA( * ), Q( LDQ, * ), WORK( * ), Z( LDZ, * )
        !            24: *     ..
        !            25: *
        !            26: *  Purpose
        !            27: *  =======
        !            28: *
        !            29: *  ZTGSEN reorders the generalized Schur decomposition of a complex
        !            30: *  matrix pair (A, B) (in terms of an unitary equivalence trans-
        !            31: *  formation Q' * (A, B) * Z), so that a selected cluster of eigenvalues
        !            32: *  appears in the leading diagonal blocks of the pair (A,B). The leading
        !            33: *  columns of Q and Z form unitary bases of the corresponding left and
        !            34: *  right eigenspaces (deflating subspaces). (A, B) must be in
        !            35: *  generalized Schur canonical form, that is, A and B are both upper
        !            36: *  triangular.
        !            37: *
        !            38: *  ZTGSEN also computes the generalized eigenvalues
        !            39: *
        !            40: *           w(j)= ALPHA(j) / BETA(j)
        !            41: *
        !            42: *  of the reordered matrix pair (A, B).
        !            43: *
        !            44: *  Optionally, the routine computes estimates of reciprocal condition
        !            45: *  numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
        !            46: *  (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
        !            47: *  between the matrix pairs (A11, B11) and (A22,B22) that correspond to
        !            48: *  the selected cluster and the eigenvalues outside the cluster, resp.,
        !            49: *  and norms of "projections" onto left and right eigenspaces w.r.t.
        !            50: *  the selected cluster in the (1,1)-block.
        !            51: *
        !            52: *
        !            53: *  Arguments
        !            54: *  =========
        !            55: *
        !            56: *  IJOB    (input) integer
        !            57: *          Specifies whether condition numbers are required for the
        !            58: *          cluster of eigenvalues (PL and PR) or the deflating subspaces
        !            59: *          (Difu and Difl):
        !            60: *           =0: Only reorder w.r.t. SELECT. No extras.
        !            61: *           =1: Reciprocal of norms of "projections" onto left and right
        !            62: *               eigenspaces w.r.t. the selected cluster (PL and PR).
        !            63: *           =2: Upper bounds on Difu and Difl. F-norm-based estimate
        !            64: *               (DIF(1:2)).
        !            65: *           =3: Estimate of Difu and Difl. 1-norm-based estimate
        !            66: *               (DIF(1:2)).
        !            67: *               About 5 times as expensive as IJOB = 2.
        !            68: *           =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
        !            69: *               version to get it all.
        !            70: *           =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)
        !            71: *
        !            72: *  WANTQ   (input) LOGICAL
        !            73: *          .TRUE. : update the left transformation matrix Q;
        !            74: *          .FALSE.: do not update Q.
        !            75: *
        !            76: *  WANTZ   (input) LOGICAL
        !            77: *          .TRUE. : update the right transformation matrix Z;
        !            78: *          .FALSE.: do not update Z.
        !            79: *
        !            80: *  SELECT  (input) LOGICAL array, dimension (N)
        !            81: *          SELECT specifies the eigenvalues in the selected cluster. To
        !            82: *          select an eigenvalue w(j), SELECT(j) must be set to
        !            83: *          .TRUE..
        !            84: *
        !            85: *  N       (input) INTEGER
        !            86: *          The order of the matrices A and B. N >= 0.
        !            87: *
        !            88: *  A       (input/output) COMPLEX*16 array, dimension(LDA,N)
        !            89: *          On entry, the upper triangular matrix A, in generalized
        !            90: *          Schur canonical form.
        !            91: *          On exit, A is overwritten by the reordered matrix A.
        !            92: *
        !            93: *  LDA     (input) INTEGER
        !            94: *          The leading dimension of the array A. LDA >= max(1,N).
        !            95: *
        !            96: *  B       (input/output) COMPLEX*16 array, dimension(LDB,N)
        !            97: *          On entry, the upper triangular matrix B, in generalized
        !            98: *          Schur canonical form.
        !            99: *          On exit, B is overwritten by the reordered matrix B.
        !           100: *
        !           101: *  LDB     (input) INTEGER
        !           102: *          The leading dimension of the array B. LDB >= max(1,N).
        !           103: *
        !           104: *  ALPHA   (output) COMPLEX*16 array, dimension (N)
        !           105: *  BETA    (output) COMPLEX*16 array, dimension (N)
        !           106: *          The diagonal elements of A and B, respectively,
        !           107: *          when the pair (A,B) has been reduced to generalized Schur
        !           108: *          form.  ALPHA(i)/BETA(i) i=1,...,N are the generalized
        !           109: *          eigenvalues.
        !           110: *
        !           111: *  Q       (input/output) COMPLEX*16 array, dimension (LDQ,N)
        !           112: *          On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
        !           113: *          On exit, Q has been postmultiplied by the left unitary
        !           114: *          transformation matrix which reorder (A, B); The leading M
        !           115: *          columns of Q form orthonormal bases for the specified pair of
        !           116: *          left eigenspaces (deflating subspaces).
        !           117: *          If WANTQ = .FALSE., Q is not referenced.
        !           118: *
        !           119: *  LDQ     (input) INTEGER
        !           120: *          The leading dimension of the array Q. LDQ >= 1.
        !           121: *          If WANTQ = .TRUE., LDQ >= N.
        !           122: *
        !           123: *  Z       (input/output) COMPLEX*16 array, dimension (LDZ,N)
        !           124: *          On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
        !           125: *          On exit, Z has been postmultiplied by the left unitary
        !           126: *          transformation matrix which reorder (A, B); The leading M
        !           127: *          columns of Z form orthonormal bases for the specified pair of
        !           128: *          left eigenspaces (deflating subspaces).
        !           129: *          If WANTZ = .FALSE., Z is not referenced.
        !           130: *
        !           131: *  LDZ     (input) INTEGER
        !           132: *          The leading dimension of the array Z. LDZ >= 1.
        !           133: *          If WANTZ = .TRUE., LDZ >= N.
        !           134: *
        !           135: *  M       (output) INTEGER
        !           136: *          The dimension of the specified pair of left and right
        !           137: *          eigenspaces, (deflating subspaces) 0 <= M <= N.
        !           138: *
        !           139: *  PL      (output) DOUBLE PRECISION
        !           140: *  PR      (output) DOUBLE PRECISION
        !           141: *          If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
        !           142: *          reciprocal  of the norm of "projections" onto left and right
        !           143: *          eigenspace with respect to the selected cluster.
        !           144: *          0 < PL, PR <= 1.
        !           145: *          If M = 0 or M = N, PL = PR  = 1.
        !           146: *          If IJOB = 0, 2 or 3 PL, PR are not referenced.
        !           147: *
        !           148: *  DIF     (output) DOUBLE PRECISION array, dimension (2).
        !           149: *          If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
        !           150: *          If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
        !           151: *          Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
        !           152: *          estimates of Difu and Difl, computed using reversed
        !           153: *          communication with ZLACN2.
        !           154: *          If M = 0 or N, DIF(1:2) = F-norm([A, B]).
        !           155: *          If IJOB = 0 or 1, DIF is not referenced.
        !           156: *
        !           157: *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
        !           158: *          IF IJOB = 0, WORK is not referenced.  Otherwise,
        !           159: *          on exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           160: *
        !           161: *  LWORK   (input) INTEGER
        !           162: *          The dimension of the array WORK. LWORK >=  1
        !           163: *          If IJOB = 1, 2 or 4, LWORK >=  2*M*(N-M)
        !           164: *          If IJOB = 3 or 5, LWORK >=  4*M*(N-M)
        !           165: *
        !           166: *          If LWORK = -1, then a workspace query is assumed; the routine
        !           167: *          only calculates the optimal size of the WORK array, returns
        !           168: *          this value as the first entry of the WORK array, and no error
        !           169: *          message related to LWORK is issued by XERBLA.
        !           170: *
        !           171: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
        !           172: *          IF IJOB = 0, IWORK is not referenced.  Otherwise,
        !           173: *          on exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
        !           174: *
        !           175: *  LIWORK  (input) INTEGER
        !           176: *          The dimension of the array IWORK. LIWORK >= 1.
        !           177: *          If IJOB = 1, 2 or 4, LIWORK >=  N+2;
        !           178: *          If IJOB = 3 or 5, LIWORK >= MAX(N+2, 2*M*(N-M));
        !           179: *
        !           180: *          If LIWORK = -1, then a workspace query is assumed; the
        !           181: *          routine only calculates the optimal size of the IWORK array,
        !           182: *          returns this value as the first entry of the IWORK array, and
        !           183: *          no error message related to LIWORK is issued by XERBLA.
        !           184: *
        !           185: *  INFO    (output) INTEGER
        !           186: *            =0: Successful exit.
        !           187: *            <0: If INFO = -i, the i-th argument had an illegal value.
        !           188: *            =1: Reordering of (A, B) failed because the transformed
        !           189: *                matrix pair (A, B) would be too far from generalized
        !           190: *                Schur form; the problem is very ill-conditioned.
        !           191: *                (A, B) may have been partially reordered.
        !           192: *                If requested, 0 is returned in DIF(*), PL and PR.
        !           193: *
        !           194: *
        !           195: *  Further Details
        !           196: *  ===============
        !           197: *
        !           198: *  ZTGSEN first collects the selected eigenvalues by computing unitary
        !           199: *  U and W that move them to the top left corner of (A, B). In other
        !           200: *  words, the selected eigenvalues are the eigenvalues of (A11, B11) in
        !           201: *
        !           202: *                U'*(A, B)*W = (A11 A12) (B11 B12) n1
        !           203: *                              ( 0  A22),( 0  B22) n2
        !           204: *                                n1  n2    n1  n2
        !           205: *
        !           206: *  where N = n1+n2 and U' means the conjugate transpose of U. The first
        !           207: *  n1 columns of U and W span the specified pair of left and right
        !           208: *  eigenspaces (deflating subspaces) of (A, B).
        !           209: *
        !           210: *  If (A, B) has been obtained from the generalized real Schur
        !           211: *  decomposition of a matrix pair (C, D) = Q*(A, B)*Z', then the
        !           212: *  reordered generalized Schur form of (C, D) is given by
        !           213: *
        !           214: *           (C, D) = (Q*U)*(U'*(A, B)*W)*(Z*W)',
        !           215: *
        !           216: *  and the first n1 columns of Q*U and Z*W span the corresponding
        !           217: *  deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
        !           218: *
        !           219: *  Note that if the selected eigenvalue is sufficiently ill-conditioned,
        !           220: *  then its value may differ significantly from its value before
        !           221: *  reordering.
        !           222: *
        !           223: *  The reciprocal condition numbers of the left and right eigenspaces
        !           224: *  spanned by the first n1 columns of U and W (or Q*U and Z*W) may
        !           225: *  be returned in DIF(1:2), corresponding to Difu and Difl, resp.
        !           226: *
        !           227: *  The Difu and Difl are defined as:
        !           228: *
        !           229: *       Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
        !           230: *  and
        !           231: *       Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
        !           232: *
        !           233: *  where sigma-min(Zu) is the smallest singular value of the
        !           234: *  (2*n1*n2)-by-(2*n1*n2) matrix
        !           235: *
        !           236: *       Zu = [ kron(In2, A11)  -kron(A22', In1) ]
        !           237: *            [ kron(In2, B11)  -kron(B22', In1) ].
        !           238: *
        !           239: *  Here, Inx is the identity matrix of size nx and A22' is the
        !           240: *  transpose of A22. kron(X, Y) is the Kronecker product between
        !           241: *  the matrices X and Y.
        !           242: *
        !           243: *  When DIF(2) is small, small changes in (A, B) can cause large changes
        !           244: *  in the deflating subspace. An approximate (asymptotic) bound on the
        !           245: *  maximum angular error in the computed deflating subspaces is
        !           246: *
        !           247: *       EPS * norm((A, B)) / DIF(2),
        !           248: *
        !           249: *  where EPS is the machine precision.
        !           250: *
        !           251: *  The reciprocal norm of the projectors on the left and right
        !           252: *  eigenspaces associated with (A11, B11) may be returned in PL and PR.
        !           253: *  They are computed as follows. First we compute L and R so that
        !           254: *  P*(A, B)*Q is block diagonal, where
        !           255: *
        !           256: *       P = ( I -L ) n1           Q = ( I R ) n1
        !           257: *           ( 0  I ) n2    and        ( 0 I ) n2
        !           258: *             n1 n2                    n1 n2
        !           259: *
        !           260: *  and (L, R) is the solution to the generalized Sylvester equation
        !           261: *
        !           262: *       A11*R - L*A22 = -A12
        !           263: *       B11*R - L*B22 = -B12
        !           264: *
        !           265: *  Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
        !           266: *  An approximate (asymptotic) bound on the average absolute error of
        !           267: *  the selected eigenvalues is
        !           268: *
        !           269: *       EPS * norm((A, B)) / PL.
        !           270: *
        !           271: *  There are also global error bounds which valid for perturbations up
        !           272: *  to a certain restriction:  A lower bound (x) on the smallest
        !           273: *  F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
        !           274: *  coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
        !           275: *  (i.e. (A + E, B + F), is
        !           276: *
        !           277: *   x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
        !           278: *
        !           279: *  An approximate bound on x can be computed from DIF(1:2), PL and PR.
        !           280: *
        !           281: *  If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
        !           282: *  (L', R') and unperturbed (L, R) left and right deflating subspaces
        !           283: *  associated with the selected cluster in the (1,1)-blocks can be
        !           284: *  bounded as
        !           285: *
        !           286: *   max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
        !           287: *   max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
        !           288: *
        !           289: *  See LAPACK User's Guide section 4.11 or the following references
        !           290: *  for more information.
        !           291: *
        !           292: *  Note that if the default method for computing the Frobenius-norm-
        !           293: *  based estimate DIF is not wanted (see ZLATDF), then the parameter
        !           294: *  IDIFJB (see below) should be changed from 3 to 4 (routine ZLATDF
        !           295: *  (IJOB = 2 will be used)). See ZTGSYL for more details.
        !           296: *
        !           297: *  Based on contributions by
        !           298: *     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
        !           299: *     Umea University, S-901 87 Umea, Sweden.
        !           300: *
        !           301: *  References
        !           302: *  ==========
        !           303: *
        !           304: *  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
        !           305: *      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
        !           306: *      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
        !           307: *      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
        !           308: *
        !           309: *  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
        !           310: *      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
        !           311: *      Estimation: Theory, Algorithms and Software, Report
        !           312: *      UMINF - 94.04, Department of Computing Science, Umea University,
        !           313: *      S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.
        !           314: *      To appear in Numerical Algorithms, 1996.
        !           315: *
        !           316: *  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
        !           317: *      for Solving the Generalized Sylvester Equation and Estimating the
        !           318: *      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
        !           319: *      Department of Computing Science, Umea University, S-901 87 Umea,
        !           320: *      Sweden, December 1993, Revised April 1994, Also as LAPACK working
        !           321: *      Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
        !           322: *      1996.
        !           323: *
        !           324: *  =====================================================================
        !           325: *
        !           326: *     .. Parameters ..
        !           327:       INTEGER            IDIFJB
        !           328:       PARAMETER          ( IDIFJB = 3 )
        !           329:       DOUBLE PRECISION   ZERO, ONE
        !           330:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
        !           331: *     ..
        !           332: *     .. Local Scalars ..
        !           333:       LOGICAL            LQUERY, SWAP, WANTD, WANTD1, WANTD2, WANTP
        !           334:       INTEGER            I, IERR, IJB, K, KASE, KS, LIWMIN, LWMIN, MN2,
        !           335:      $                   N1, N2
        !           336:       DOUBLE PRECISION   DSCALE, DSUM, RDSCAL, SAFMIN
        !           337:       COMPLEX*16         TEMP1, TEMP2
        !           338: *     ..
        !           339: *     .. Local Arrays ..
        !           340:       INTEGER            ISAVE( 3 )
        !           341: *     ..
        !           342: *     .. External Subroutines ..
        !           343:       EXTERNAL           XERBLA, ZLACN2, ZLACPY, ZLASSQ, ZSCAL, ZTGEXC,
        !           344:      $                   ZTGSYL
        !           345: *     ..
        !           346: *     .. Intrinsic Functions ..
        !           347:       INTRINSIC          ABS, DCMPLX, DCONJG, MAX, SQRT
        !           348: *     ..
        !           349: *     .. External Functions ..
        !           350:       DOUBLE PRECISION   DLAMCH
        !           351:       EXTERNAL           DLAMCH
        !           352: *     ..
        !           353: *     .. Executable Statements ..
        !           354: *
        !           355: *     Decode and test the input parameters
        !           356: *
        !           357:       INFO = 0
        !           358:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
        !           359: *
        !           360:       IF( IJOB.LT.0 .OR. IJOB.GT.5 ) THEN
        !           361:          INFO = -1
        !           362:       ELSE IF( N.LT.0 ) THEN
        !           363:          INFO = -5
        !           364:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           365:          INFO = -7
        !           366:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        !           367:          INFO = -9
        !           368:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
        !           369:          INFO = -13
        !           370:       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
        !           371:          INFO = -15
        !           372:       END IF
        !           373: *
        !           374:       IF( INFO.NE.0 ) THEN
        !           375:          CALL XERBLA( 'ZTGSEN', -INFO )
        !           376:          RETURN
        !           377:       END IF
        !           378: *
        !           379:       IERR = 0
        !           380: *
        !           381:       WANTP = IJOB.EQ.1 .OR. IJOB.GE.4
        !           382:       WANTD1 = IJOB.EQ.2 .OR. IJOB.EQ.4
        !           383:       WANTD2 = IJOB.EQ.3 .OR. IJOB.EQ.5
        !           384:       WANTD = WANTD1 .OR. WANTD2
        !           385: *
        !           386: *     Set M to the dimension of the specified pair of deflating
        !           387: *     subspaces.
        !           388: *
        !           389:       M = 0
        !           390:       DO 10 K = 1, N
        !           391:          ALPHA( K ) = A( K, K )
        !           392:          BETA( K ) = B( K, K )
        !           393:          IF( K.LT.N ) THEN
        !           394:             IF( SELECT( K ) )
        !           395:      $         M = M + 1
        !           396:          ELSE
        !           397:             IF( SELECT( N ) )
        !           398:      $         M = M + 1
        !           399:          END IF
        !           400:    10 CONTINUE
        !           401: *
        !           402:       IF( IJOB.EQ.1 .OR. IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN
        !           403:          LWMIN = MAX( 1, 2*M*( N-M ) )
        !           404:          LIWMIN = MAX( 1, N+2 )
        !           405:       ELSE IF( IJOB.EQ.3 .OR. IJOB.EQ.5 ) THEN
        !           406:          LWMIN = MAX( 1, 4*M*( N-M ) )
        !           407:          LIWMIN = MAX( 1, 2*M*( N-M ), N+2 )
        !           408:       ELSE
        !           409:          LWMIN = 1
        !           410:          LIWMIN = 1
        !           411:       END IF
        !           412: *
        !           413:       WORK( 1 ) = LWMIN
        !           414:       IWORK( 1 ) = LIWMIN
        !           415: *
        !           416:       IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
        !           417:          INFO = -21
        !           418:       ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
        !           419:          INFO = -23
        !           420:       END IF
        !           421: *
        !           422:       IF( INFO.NE.0 ) THEN
        !           423:          CALL XERBLA( 'ZTGSEN', -INFO )
        !           424:          RETURN
        !           425:       ELSE IF( LQUERY ) THEN
        !           426:          RETURN
        !           427:       END IF
        !           428: *
        !           429: *     Quick return if possible.
        !           430: *
        !           431:       IF( M.EQ.N .OR. M.EQ.0 ) THEN
        !           432:          IF( WANTP ) THEN
        !           433:             PL = ONE
        !           434:             PR = ONE
        !           435:          END IF
        !           436:          IF( WANTD ) THEN
        !           437:             DSCALE = ZERO
        !           438:             DSUM = ONE
        !           439:             DO 20 I = 1, N
        !           440:                CALL ZLASSQ( N, A( 1, I ), 1, DSCALE, DSUM )
        !           441:                CALL ZLASSQ( N, B( 1, I ), 1, DSCALE, DSUM )
        !           442:    20       CONTINUE
        !           443:             DIF( 1 ) = DSCALE*SQRT( DSUM )
        !           444:             DIF( 2 ) = DIF( 1 )
        !           445:          END IF
        !           446:          GO TO 70
        !           447:       END IF
        !           448: *
        !           449: *     Get machine constant
        !           450: *
        !           451:       SAFMIN = DLAMCH( 'S' )
        !           452: *
        !           453: *     Collect the selected blocks at the top-left corner of (A, B).
        !           454: *
        !           455:       KS = 0
        !           456:       DO 30 K = 1, N
        !           457:          SWAP = SELECT( K )
        !           458:          IF( SWAP ) THEN
        !           459:             KS = KS + 1
        !           460: *
        !           461: *           Swap the K-th block to position KS. Compute unitary Q
        !           462: *           and Z that will swap adjacent diagonal blocks in (A, B).
        !           463: *
        !           464:             IF( K.NE.KS )
        !           465:      $         CALL ZTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
        !           466:      $                      LDZ, K, KS, IERR )
        !           467: *
        !           468:             IF( IERR.GT.0 ) THEN
        !           469: *
        !           470: *              Swap is rejected: exit.
        !           471: *
        !           472:                INFO = 1
        !           473:                IF( WANTP ) THEN
        !           474:                   PL = ZERO
        !           475:                   PR = ZERO
        !           476:                END IF
        !           477:                IF( WANTD ) THEN
        !           478:                   DIF( 1 ) = ZERO
        !           479:                   DIF( 2 ) = ZERO
        !           480:                END IF
        !           481:                GO TO 70
        !           482:             END IF
        !           483:          END IF
        !           484:    30 CONTINUE
        !           485:       IF( WANTP ) THEN
        !           486: *
        !           487: *        Solve generalized Sylvester equation for R and L:
        !           488: *                   A11 * R - L * A22 = A12
        !           489: *                   B11 * R - L * B22 = B12
        !           490: *
        !           491:          N1 = M
        !           492:          N2 = N - M
        !           493:          I = N1 + 1
        !           494:          CALL ZLACPY( 'Full', N1, N2, A( 1, I ), LDA, WORK, N1 )
        !           495:          CALL ZLACPY( 'Full', N1, N2, B( 1, I ), LDB, WORK( N1*N2+1 ),
        !           496:      $                N1 )
        !           497:          IJB = 0
        !           498:          CALL ZTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
        !           499:      $                N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ), N1,
        !           500:      $                DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ),
        !           501:      $                LWORK-2*N1*N2, IWORK, IERR )
        !           502: *
        !           503: *        Estimate the reciprocal of norms of "projections" onto
        !           504: *        left and right eigenspaces
        !           505: *
        !           506:          RDSCAL = ZERO
        !           507:          DSUM = ONE
        !           508:          CALL ZLASSQ( N1*N2, WORK, 1, RDSCAL, DSUM )
        !           509:          PL = RDSCAL*SQRT( DSUM )
        !           510:          IF( PL.EQ.ZERO ) THEN
        !           511:             PL = ONE
        !           512:          ELSE
        !           513:             PL = DSCALE / ( SQRT( DSCALE*DSCALE / PL+PL )*SQRT( PL ) )
        !           514:          END IF
        !           515:          RDSCAL = ZERO
        !           516:          DSUM = ONE
        !           517:          CALL ZLASSQ( N1*N2, WORK( N1*N2+1 ), 1, RDSCAL, DSUM )
        !           518:          PR = RDSCAL*SQRT( DSUM )
        !           519:          IF( PR.EQ.ZERO ) THEN
        !           520:             PR = ONE
        !           521:          ELSE
        !           522:             PR = DSCALE / ( SQRT( DSCALE*DSCALE / PR+PR )*SQRT( PR ) )
        !           523:          END IF
        !           524:       END IF
        !           525:       IF( WANTD ) THEN
        !           526: *
        !           527: *        Compute estimates Difu and Difl.
        !           528: *
        !           529:          IF( WANTD1 ) THEN
        !           530:             N1 = M
        !           531:             N2 = N - M
        !           532:             I = N1 + 1
        !           533:             IJB = IDIFJB
        !           534: *
        !           535: *           Frobenius norm-based Difu estimate.
        !           536: *
        !           537:             CALL ZTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
        !           538:      $                   N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ),
        !           539:      $                   N1, DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ),
        !           540:      $                   LWORK-2*N1*N2, IWORK, IERR )
        !           541: *
        !           542: *           Frobenius norm-based Difl estimate.
        !           543: *
        !           544:             CALL ZTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA, WORK,
        !           545:      $                   N2, B( I, I ), LDB, B, LDB, WORK( N1*N2+1 ),
        !           546:      $                   N2, DSCALE, DIF( 2 ), WORK( N1*N2*2+1 ),
        !           547:      $                   LWORK-2*N1*N2, IWORK, IERR )
        !           548:          ELSE
        !           549: *
        !           550: *           Compute 1-norm-based estimates of Difu and Difl using
        !           551: *           reversed communication with ZLACN2. In each step a
        !           552: *           generalized Sylvester equation or a transposed variant
        !           553: *           is solved.
        !           554: *
        !           555:             KASE = 0
        !           556:             N1 = M
        !           557:             N2 = N - M
        !           558:             I = N1 + 1
        !           559:             IJB = 0
        !           560:             MN2 = 2*N1*N2
        !           561: *
        !           562: *           1-norm-based estimate of Difu.
        !           563: *
        !           564:    40       CONTINUE
        !           565:             CALL ZLACN2( MN2, WORK( MN2+1 ), WORK, DIF( 1 ), KASE,
        !           566:      $                   ISAVE )
        !           567:             IF( KASE.NE.0 ) THEN
        !           568:                IF( KASE.EQ.1 ) THEN
        !           569: *
        !           570: *                 Solve generalized Sylvester equation
        !           571: *
        !           572:                   CALL ZTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA,
        !           573:      $                         WORK, N1, B, LDB, B( I, I ), LDB,
        !           574:      $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
        !           575:      $                         WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
        !           576:      $                         IERR )
        !           577:                ELSE
        !           578: *
        !           579: *                 Solve the transposed variant.
        !           580: *
        !           581:                   CALL ZTGSYL( 'C', IJB, N1, N2, A, LDA, A( I, I ), LDA,
        !           582:      $                         WORK, N1, B, LDB, B( I, I ), LDB,
        !           583:      $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
        !           584:      $                         WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
        !           585:      $                         IERR )
        !           586:                END IF
        !           587:                GO TO 40
        !           588:             END IF
        !           589:             DIF( 1 ) = DSCALE / DIF( 1 )
        !           590: *
        !           591: *           1-norm-based estimate of Difl.
        !           592: *
        !           593:    50       CONTINUE
        !           594:             CALL ZLACN2( MN2, WORK( MN2+1 ), WORK, DIF( 2 ), KASE,
        !           595:      $                   ISAVE )
        !           596:             IF( KASE.NE.0 ) THEN
        !           597:                IF( KASE.EQ.1 ) THEN
        !           598: *
        !           599: *                 Solve generalized Sylvester equation
        !           600: *
        !           601:                   CALL ZTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA,
        !           602:      $                         WORK, N2, B( I, I ), LDB, B, LDB,
        !           603:      $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
        !           604:      $                         WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
        !           605:      $                         IERR )
        !           606:                ELSE
        !           607: *
        !           608: *                 Solve the transposed variant.
        !           609: *
        !           610:                   CALL ZTGSYL( 'C', IJB, N2, N1, A( I, I ), LDA, A, LDA,
        !           611:      $                         WORK, N2, B, LDB, B( I, I ), LDB,
        !           612:      $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
        !           613:      $                         WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
        !           614:      $                         IERR )
        !           615:                END IF
        !           616:                GO TO 50
        !           617:             END IF
        !           618:             DIF( 2 ) = DSCALE / DIF( 2 )
        !           619:          END IF
        !           620:       END IF
        !           621: *
        !           622: *     If B(K,K) is complex, make it real and positive (normalization
        !           623: *     of the generalized Schur form) and Store the generalized
        !           624: *     eigenvalues of reordered pair (A, B)
        !           625: *
        !           626:       DO 60 K = 1, N
        !           627:          DSCALE = ABS( B( K, K ) )
        !           628:          IF( DSCALE.GT.SAFMIN ) THEN
        !           629:             TEMP1 = DCONJG( B( K, K ) / DSCALE )
        !           630:             TEMP2 = B( K, K ) / DSCALE
        !           631:             B( K, K ) = DSCALE
        !           632:             CALL ZSCAL( N-K, TEMP1, B( K, K+1 ), LDB )
        !           633:             CALL ZSCAL( N-K+1, TEMP1, A( K, K ), LDA )
        !           634:             IF( WANTQ )
        !           635:      $         CALL ZSCAL( N, TEMP2, Q( 1, K ), 1 )
        !           636:          ELSE
        !           637:             B( K, K ) = DCMPLX( ZERO, ZERO )
        !           638:          END IF
        !           639: *
        !           640:          ALPHA( K ) = A( K, K )
        !           641:          BETA( K ) = B( K, K )
        !           642: *
        !           643:    60 CONTINUE
        !           644: *
        !           645:    70 CONTINUE
        !           646: *
        !           647:       WORK( 1 ) = LWMIN
        !           648:       IWORK( 1 ) = LIWMIN
        !           649: *
        !           650:       RETURN
        !           651: *
        !           652: *     End of ZTGSEN
        !           653: *
        !           654:       END

CVSweb interface <joel.bertrand@systella.fr>