Diff for /rpl/lapack/lapack/ztgsen.f between versions 1.9 and 1.10

version 1.9, 2011/07/22 07:38:21 version 1.10, 2011/11/21 20:43:22
Line 1 Line 1
   *> \brief \b ZTGSEN
   *
   *  =========== DOCUMENTATION ===========
   *
   * Online html documentation available at 
   *            http://www.netlib.org/lapack/explore-html/ 
   *
   *> \htmlonly
   *> Download ZTGSEN + dependencies 
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztgsen.f"> 
   *> [TGZ]</a> 
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztgsen.f"> 
   *> [ZIP]</a> 
   *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztgsen.f"> 
   *> [TXT]</a>
   *> \endhtmlonly 
   *
   *  Definition:
   *  ===========
   *
   *       SUBROUTINE ZTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
   *                          ALPHA, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF,
   *                          WORK, LWORK, IWORK, LIWORK, INFO )
   * 
   *       .. Scalar Arguments ..
   *       LOGICAL            WANTQ, WANTZ
   *       INTEGER            IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
   *      $                   M, N
   *       DOUBLE PRECISION   PL, PR
   *       ..
   *       .. Array Arguments ..
   *       LOGICAL            SELECT( * )
   *       INTEGER            IWORK( * )
   *       DOUBLE PRECISION   DIF( * )
   *       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
   *      $                   BETA( * ), Q( LDQ, * ), WORK( * ), Z( LDZ, * )
   *       ..
   *  
   *
   *> \par Purpose:
   *  =============
   *>
   *> \verbatim
   *>
   *> ZTGSEN reorders the generalized Schur decomposition of a complex
   *> matrix pair (A, B) (in terms of an unitary equivalence trans-
   *> formation Q**H * (A, B) * Z), so that a selected cluster of eigenvalues
   *> appears in the leading diagonal blocks of the pair (A,B). The leading
   *> columns of Q and Z form unitary bases of the corresponding left and
   *> right eigenspaces (deflating subspaces). (A, B) must be in
   *> generalized Schur canonical form, that is, A and B are both upper
   *> triangular.
   *>
   *> ZTGSEN also computes the generalized eigenvalues
   *>
   *>          w(j)= ALPHA(j) / BETA(j)
   *>
   *> of the reordered matrix pair (A, B).
   *>
   *> Optionally, the routine computes estimates of reciprocal condition
   *> numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
   *> (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
   *> between the matrix pairs (A11, B11) and (A22,B22) that correspond to
   *> the selected cluster and the eigenvalues outside the cluster, resp.,
   *> and norms of "projections" onto left and right eigenspaces w.r.t.
   *> the selected cluster in the (1,1)-block.
   *>
   *> \endverbatim
   *
   *  Arguments:
   *  ==========
   *
   *> \param[in] IJOB
   *> \verbatim
   *>          IJOB is integer
   *>          Specifies whether condition numbers are required for the
   *>          cluster of eigenvalues (PL and PR) or the deflating subspaces
   *>          (Difu and Difl):
   *>           =0: Only reorder w.r.t. SELECT. No extras.
   *>           =1: Reciprocal of norms of "projections" onto left and right
   *>               eigenspaces w.r.t. the selected cluster (PL and PR).
   *>           =2: Upper bounds on Difu and Difl. F-norm-based estimate
   *>               (DIF(1:2)).
   *>           =3: Estimate of Difu and Difl. 1-norm-based estimate
   *>               (DIF(1:2)).
   *>               About 5 times as expensive as IJOB = 2.
   *>           =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
   *>               version to get it all.
   *>           =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)
   *> \endverbatim
   *>
   *> \param[in] WANTQ
   *> \verbatim
   *>          WANTQ is LOGICAL
   *>          .TRUE. : update the left transformation matrix Q;
   *>          .FALSE.: do not update Q.
   *> \endverbatim
   *>
   *> \param[in] WANTZ
   *> \verbatim
   *>          WANTZ is LOGICAL
   *>          .TRUE. : update the right transformation matrix Z;
   *>          .FALSE.: do not update Z.
   *> \endverbatim
   *>
   *> \param[in] SELECT
   *> \verbatim
   *>          SELECT is LOGICAL array, dimension (N)
   *>          SELECT specifies the eigenvalues in the selected cluster. To
   *>          select an eigenvalue w(j), SELECT(j) must be set to
   *>          .TRUE..
   *> \endverbatim
   *>
   *> \param[in] N
   *> \verbatim
   *>          N is INTEGER
   *>          The order of the matrices A and B. N >= 0.
   *> \endverbatim
   *>
   *> \param[in,out] A
   *> \verbatim
   *>          A is COMPLEX*16 array, dimension(LDA,N)
   *>          On entry, the upper triangular matrix A, in generalized
   *>          Schur canonical form.
   *>          On exit, A is overwritten by the reordered matrix A.
   *> \endverbatim
   *>
   *> \param[in] LDA
   *> \verbatim
   *>          LDA is INTEGER
   *>          The leading dimension of the array A. LDA >= max(1,N).
   *> \endverbatim
   *>
   *> \param[in,out] B
   *> \verbatim
   *>          B is COMPLEX*16 array, dimension(LDB,N)
   *>          On entry, the upper triangular matrix B, in generalized
   *>          Schur canonical form.
   *>          On exit, B is overwritten by the reordered matrix B.
   *> \endverbatim
   *>
   *> \param[in] LDB
   *> \verbatim
   *>          LDB is INTEGER
   *>          The leading dimension of the array B. LDB >= max(1,N).
   *> \endverbatim
   *>
   *> \param[out] ALPHA
   *> \verbatim
   *>          ALPHA is COMPLEX*16 array, dimension (N)
   *> \endverbatim
   *>
   *> \param[out] BETA
   *> \verbatim
   *>          BETA is COMPLEX*16 array, dimension (N)
   *>
   *>          The diagonal elements of A and B, respectively,
   *>          when the pair (A,B) has been reduced to generalized Schur
   *>          form.  ALPHA(i)/BETA(i) i=1,...,N are the generalized
   *>          eigenvalues.
   *> \endverbatim
   *>
   *> \param[in,out] Q
   *> \verbatim
   *>          Q is COMPLEX*16 array, dimension (LDQ,N)
   *>          On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
   *>          On exit, Q has been postmultiplied by the left unitary
   *>          transformation matrix which reorder (A, B); The leading M
   *>          columns of Q form orthonormal bases for the specified pair of
   *>          left eigenspaces (deflating subspaces).
   *>          If WANTQ = .FALSE., Q is not referenced.
   *> \endverbatim
   *>
   *> \param[in] LDQ
   *> \verbatim
   *>          LDQ is INTEGER
   *>          The leading dimension of the array Q. LDQ >= 1.
   *>          If WANTQ = .TRUE., LDQ >= N.
   *> \endverbatim
   *>
   *> \param[in,out] Z
   *> \verbatim
   *>          Z is COMPLEX*16 array, dimension (LDZ,N)
   *>          On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
   *>          On exit, Z has been postmultiplied by the left unitary
   *>          transformation matrix which reorder (A, B); The leading M
   *>          columns of Z form orthonormal bases for the specified pair of
   *>          left eigenspaces (deflating subspaces).
   *>          If WANTZ = .FALSE., Z is not referenced.
   *> \endverbatim
   *>
   *> \param[in] LDZ
   *> \verbatim
   *>          LDZ is INTEGER
   *>          The leading dimension of the array Z. LDZ >= 1.
   *>          If WANTZ = .TRUE., LDZ >= N.
   *> \endverbatim
   *>
   *> \param[out] M
   *> \verbatim
   *>          M is INTEGER
   *>          The dimension of the specified pair of left and right
   *>          eigenspaces, (deflating subspaces) 0 <= M <= N.
   *> \endverbatim
   *>
   *> \param[out] PL
   *> \verbatim
   *>          PL is DOUBLE PRECISION
   *> \endverbatim
   *>
   *> \param[out] PR
   *> \verbatim
   *>          PR is DOUBLE PRECISION
   *>
   *>          If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
   *>          reciprocal  of the norm of "projections" onto left and right
   *>          eigenspace with respect to the selected cluster.
   *>          0 < PL, PR <= 1.
   *>          If M = 0 or M = N, PL = PR  = 1.
   *>          If IJOB = 0, 2 or 3 PL, PR are not referenced.
   *> \endverbatim
   *>
   *> \param[out] DIF
   *> \verbatim
   *>          DIF is DOUBLE PRECISION array, dimension (2).
   *>          If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
   *>          If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
   *>          Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
   *>          estimates of Difu and Difl, computed using reversed
   *>          communication with ZLACN2.
   *>          If M = 0 or N, DIF(1:2) = F-norm([A, B]).
   *>          If IJOB = 0 or 1, DIF is not referenced.
   *> \endverbatim
   *>
   *> \param[out] WORK
   *> \verbatim
   *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
   *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
   *> \endverbatim
   *>
   *> \param[in] LWORK
   *> \verbatim
   *>          LWORK is INTEGER
   *>          The dimension of the array WORK. LWORK >=  1
   *>          If IJOB = 1, 2 or 4, LWORK >=  2*M*(N-M)
   *>          If IJOB = 3 or 5, LWORK >=  4*M*(N-M)
   *>
   *>          If LWORK = -1, then a workspace query is assumed; the routine
   *>          only calculates the optimal size of the WORK array, returns
   *>          this value as the first entry of the WORK array, and no error
   *>          message related to LWORK is issued by XERBLA.
   *> \endverbatim
   *>
   *> \param[out] IWORK
   *> \verbatim
   *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
   *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
   *> \endverbatim
   *>
   *> \param[in] LIWORK
   *> \verbatim
   *>          LIWORK is INTEGER
   *>          The dimension of the array IWORK. LIWORK >= 1.
   *>          If IJOB = 1, 2 or 4, LIWORK >=  N+2;
   *>          If IJOB = 3 or 5, LIWORK >= MAX(N+2, 2*M*(N-M));
   *>
   *>          If LIWORK = -1, then a workspace query is assumed; the
   *>          routine only calculates the optimal size of the IWORK array,
   *>          returns this value as the first entry of the IWORK array, and
   *>          no error message related to LIWORK is issued by XERBLA.
   *> \endverbatim
   *>
   *> \param[out] INFO
   *> \verbatim
   *>          INFO is INTEGER
   *>            =0: Successful exit.
   *>            <0: If INFO = -i, the i-th argument had an illegal value.
   *>            =1: Reordering of (A, B) failed because the transformed
   *>                matrix pair (A, B) would be too far from generalized
   *>                Schur form; the problem is very ill-conditioned.
   *>                (A, B) may have been partially reordered.
   *>                If requested, 0 is returned in DIF(*), PL and PR.
   *> \endverbatim
   *
   *  Authors:
   *  ========
   *
   *> \author Univ. of Tennessee 
   *> \author Univ. of California Berkeley 
   *> \author Univ. of Colorado Denver 
   *> \author NAG Ltd. 
   *
   *> \date November 2011
   *
   *> \ingroup complex16OTHERcomputational
   *
   *> \par Further Details:
   *  =====================
   *>
   *> \verbatim
   *>
   *>  ZTGSEN first collects the selected eigenvalues by computing unitary
   *>  U and W that move them to the top left corner of (A, B). In other
   *>  words, the selected eigenvalues are the eigenvalues of (A11, B11) in
   *>
   *>              U**H*(A, B)*W = (A11 A12) (B11 B12) n1
   *>                              ( 0  A22),( 0  B22) n2
   *>                                n1  n2    n1  n2
   *>
   *>  where N = n1+n2 and U**H means the conjugate transpose of U. The first
   *>  n1 columns of U and W span the specified pair of left and right
   *>  eigenspaces (deflating subspaces) of (A, B).
   *>
   *>  If (A, B) has been obtained from the generalized real Schur
   *>  decomposition of a matrix pair (C, D) = Q*(A, B)*Z**H, then the
   *>  reordered generalized Schur form of (C, D) is given by
   *>
   *>           (C, D) = (Q*U)*(U**H *(A, B)*W)*(Z*W)**H,
   *>
   *>  and the first n1 columns of Q*U and Z*W span the corresponding
   *>  deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
   *>
   *>  Note that if the selected eigenvalue is sufficiently ill-conditioned,
   *>  then its value may differ significantly from its value before
   *>  reordering.
   *>
   *>  The reciprocal condition numbers of the left and right eigenspaces
   *>  spanned by the first n1 columns of U and W (or Q*U and Z*W) may
   *>  be returned in DIF(1:2), corresponding to Difu and Difl, resp.
   *>
   *>  The Difu and Difl are defined as:
   *>
   *>       Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
   *>  and
   *>       Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
   *>
   *>  where sigma-min(Zu) is the smallest singular value of the
   *>  (2*n1*n2)-by-(2*n1*n2) matrix
   *>
   *>       Zu = [ kron(In2, A11)  -kron(A22**H, In1) ]
   *>            [ kron(In2, B11)  -kron(B22**H, In1) ].
   *>
   *>  Here, Inx is the identity matrix of size nx and A22**H is the
   *>  conjugate transpose of A22. kron(X, Y) is the Kronecker product between
   *>  the matrices X and Y.
   *>
   *>  When DIF(2) is small, small changes in (A, B) can cause large changes
   *>  in the deflating subspace. An approximate (asymptotic) bound on the
   *>  maximum angular error in the computed deflating subspaces is
   *>
   *>       EPS * norm((A, B)) / DIF(2),
   *>
   *>  where EPS is the machine precision.
   *>
   *>  The reciprocal norm of the projectors on the left and right
   *>  eigenspaces associated with (A11, B11) may be returned in PL and PR.
   *>  They are computed as follows. First we compute L and R so that
   *>  P*(A, B)*Q is block diagonal, where
   *>
   *>       P = ( I -L ) n1           Q = ( I R ) n1
   *>           ( 0  I ) n2    and        ( 0 I ) n2
   *>             n1 n2                    n1 n2
   *>
   *>  and (L, R) is the solution to the generalized Sylvester equation
   *>
   *>       A11*R - L*A22 = -A12
   *>       B11*R - L*B22 = -B12
   *>
   *>  Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
   *>  An approximate (asymptotic) bound on the average absolute error of
   *>  the selected eigenvalues is
   *>
   *>       EPS * norm((A, B)) / PL.
   *>
   *>  There are also global error bounds which valid for perturbations up
   *>  to a certain restriction:  A lower bound (x) on the smallest
   *>  F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
   *>  coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
   *>  (i.e. (A + E, B + F), is
   *>
   *>   x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
   *>
   *>  An approximate bound on x can be computed from DIF(1:2), PL and PR.
   *>
   *>  If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
   *>  (L', R') and unperturbed (L, R) left and right deflating subspaces
   *>  associated with the selected cluster in the (1,1)-blocks can be
   *>  bounded as
   *>
   *>   max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
   *>   max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
   *>
   *>  See LAPACK User's Guide section 4.11 or the following references
   *>  for more information.
   *>
   *>  Note that if the default method for computing the Frobenius-norm-
   *>  based estimate DIF is not wanted (see ZLATDF), then the parameter
   *>  IDIFJB (see below) should be changed from 3 to 4 (routine ZLATDF
   *>  (IJOB = 2 will be used)). See ZTGSYL for more details.
   *> \endverbatim
   *
   *> \par Contributors:
   *  ==================
   *>
   *>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
   *>     Umea University, S-901 87 Umea, Sweden.
   *
   *> \par References:
   *  ================
   *>
   *>  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
   *>      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
   *>      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
   *>      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
   *> \n
   *>  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
   *>      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
   *>      Estimation: Theory, Algorithms and Software, Report
   *>      UMINF - 94.04, Department of Computing Science, Umea University,
   *>      S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.
   *>      To appear in Numerical Algorithms, 1996.
   *> \n
   *>  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
   *>      for Solving the Generalized Sylvester Equation and Estimating the
   *>      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
   *>      Department of Computing Science, Umea University, S-901 87 Umea,
   *>      Sweden, December 1993, Revised April 1994, Also as LAPACK working
   *>      Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
   *>      1996.
   *>
   *  =====================================================================
       SUBROUTINE ZTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,        SUBROUTINE ZTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
      $                   ALPHA, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF,       $                   ALPHA, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF,
      $                   WORK, LWORK, IWORK, LIWORK, INFO )       $                   WORK, LWORK, IWORK, LIWORK, INFO )
 *  *
 *  -- LAPACK routine (version 3.3.1) --  *  -- LAPACK computational routine (version 3.4.0) --
 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --  *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--  *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 *  -- April 2011                                                      --  *     November 2011
 *  
 *     Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH.  
 *  *
 *     .. Scalar Arguments ..  *     .. Scalar Arguments ..
       LOGICAL            WANTQ, WANTZ        LOGICAL            WANTQ, WANTZ
Line 23 Line 452
      $                   BETA( * ), Q( LDQ, * ), WORK( * ), Z( LDZ, * )       $                   BETA( * ), Q( LDQ, * ), WORK( * ), Z( LDZ, * )
 *     ..  *     ..
 *  *
 *  Purpose  
 *  =======  
 *  
 *  ZTGSEN reorders the generalized Schur decomposition of a complex  
 *  matrix pair (A, B) (in terms of an unitary equivalence trans-  
 *  formation Q**H * (A, B) * Z), so that a selected cluster of eigenvalues  
 *  appears in the leading diagonal blocks of the pair (A,B). The leading  
 *  columns of Q and Z form unitary bases of the corresponding left and  
 *  right eigenspaces (deflating subspaces). (A, B) must be in  
 *  generalized Schur canonical form, that is, A and B are both upper  
 *  triangular.  
 *  
 *  ZTGSEN also computes the generalized eigenvalues  
 *  
 *           w(j)= ALPHA(j) / BETA(j)  
 *  
 *  of the reordered matrix pair (A, B).  
 *  
 *  Optionally, the routine computes estimates of reciprocal condition  
 *  numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),  
 *  (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)  
 *  between the matrix pairs (A11, B11) and (A22,B22) that correspond to  
 *  the selected cluster and the eigenvalues outside the cluster, resp.,  
 *  and norms of "projections" onto left and right eigenspaces w.r.t.  
 *  the selected cluster in the (1,1)-block.  
 *  
 *  
 *  Arguments  
 *  =========  
 *  
 *  IJOB    (input) integer  
 *          Specifies whether condition numbers are required for the  
 *          cluster of eigenvalues (PL and PR) or the deflating subspaces  
 *          (Difu and Difl):  
 *           =0: Only reorder w.r.t. SELECT. No extras.  
 *           =1: Reciprocal of norms of "projections" onto left and right  
 *               eigenspaces w.r.t. the selected cluster (PL and PR).  
 *           =2: Upper bounds on Difu and Difl. F-norm-based estimate  
 *               (DIF(1:2)).  
 *           =3: Estimate of Difu and Difl. 1-norm-based estimate  
 *               (DIF(1:2)).  
 *               About 5 times as expensive as IJOB = 2.  
 *           =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic  
 *               version to get it all.  
 *           =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)  
 *  
 *  WANTQ   (input) LOGICAL  
 *          .TRUE. : update the left transformation matrix Q;  
 *          .FALSE.: do not update Q.  
 *  
 *  WANTZ   (input) LOGICAL  
 *          .TRUE. : update the right transformation matrix Z;  
 *          .FALSE.: do not update Z.  
 *  
 *  SELECT  (input) LOGICAL array, dimension (N)  
 *          SELECT specifies the eigenvalues in the selected cluster. To  
 *          select an eigenvalue w(j), SELECT(j) must be set to  
 *          .TRUE..  
 *  
 *  N       (input) INTEGER  
 *          The order of the matrices A and B. N >= 0.  
 *  
 *  A       (input/output) COMPLEX*16 array, dimension(LDA,N)  
 *          On entry, the upper triangular matrix A, in generalized  
 *          Schur canonical form.  
 *          On exit, A is overwritten by the reordered matrix A.  
 *  
 *  LDA     (input) INTEGER  
 *          The leading dimension of the array A. LDA >= max(1,N).  
 *  
 *  B       (input/output) COMPLEX*16 array, dimension(LDB,N)  
 *          On entry, the upper triangular matrix B, in generalized  
 *          Schur canonical form.  
 *          On exit, B is overwritten by the reordered matrix B.  
 *  
 *  LDB     (input) INTEGER  
 *          The leading dimension of the array B. LDB >= max(1,N).  
 *  
 *  ALPHA   (output) COMPLEX*16 array, dimension (N)  
 *  BETA    (output) COMPLEX*16 array, dimension (N)  
 *          The diagonal elements of A and B, respectively,  
 *          when the pair (A,B) has been reduced to generalized Schur  
 *          form.  ALPHA(i)/BETA(i) i=1,...,N are the generalized  
 *          eigenvalues.  
 *  
 *  Q       (input/output) COMPLEX*16 array, dimension (LDQ,N)  
 *          On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.  
 *          On exit, Q has been postmultiplied by the left unitary  
 *          transformation matrix which reorder (A, B); The leading M  
 *          columns of Q form orthonormal bases for the specified pair of  
 *          left eigenspaces (deflating subspaces).  
 *          If WANTQ = .FALSE., Q is not referenced.  
 *  
 *  LDQ     (input) INTEGER  
 *          The leading dimension of the array Q. LDQ >= 1.  
 *          If WANTQ = .TRUE., LDQ >= N.  
 *  
 *  Z       (input/output) COMPLEX*16 array, dimension (LDZ,N)  
 *          On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.  
 *          On exit, Z has been postmultiplied by the left unitary  
 *          transformation matrix which reorder (A, B); The leading M  
 *          columns of Z form orthonormal bases for the specified pair of  
 *          left eigenspaces (deflating subspaces).  
 *          If WANTZ = .FALSE., Z is not referenced.  
 *  
 *  LDZ     (input) INTEGER  
 *          The leading dimension of the array Z. LDZ >= 1.  
 *          If WANTZ = .TRUE., LDZ >= N.  
 *  
 *  M       (output) INTEGER  
 *          The dimension of the specified pair of left and right  
 *          eigenspaces, (deflating subspaces) 0 <= M <= N.  
 *  
 *  PL      (output) DOUBLE PRECISION  
 *  PR      (output) DOUBLE PRECISION  
 *          If IJOB = 1, 4 or 5, PL, PR are lower bounds on the  
 *          reciprocal  of the norm of "projections" onto left and right  
 *          eigenspace with respect to the selected cluster.  
 *          0 < PL, PR <= 1.  
 *          If M = 0 or M = N, PL = PR  = 1.  
 *          If IJOB = 0, 2 or 3 PL, PR are not referenced.  
 *  
 *  DIF     (output) DOUBLE PRECISION array, dimension (2).  
 *          If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.  
 *          If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on  
 *          Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based  
 *          estimates of Difu and Difl, computed using reversed  
 *          communication with ZLACN2.  
 *          If M = 0 or N, DIF(1:2) = F-norm([A, B]).  
 *          If IJOB = 0 or 1, DIF is not referenced.  
 *  
 *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))  
 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.  
 *  
 *  LWORK   (input) INTEGER  
 *          The dimension of the array WORK. LWORK >=  1  
 *          If IJOB = 1, 2 or 4, LWORK >=  2*M*(N-M)  
 *          If IJOB = 3 or 5, LWORK >=  4*M*(N-M)  
 *  
 *          If LWORK = -1, then a workspace query is assumed; the routine  
 *          only calculates the optimal size of the WORK array, returns  
 *          this value as the first entry of the WORK array, and no error  
 *          message related to LWORK is issued by XERBLA.  
 *  
 *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))  
 *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.  
 *  
 *  LIWORK  (input) INTEGER  
 *          The dimension of the array IWORK. LIWORK >= 1.  
 *          If IJOB = 1, 2 or 4, LIWORK >=  N+2;  
 *          If IJOB = 3 or 5, LIWORK >= MAX(N+2, 2*M*(N-M));  
 *  
 *          If LIWORK = -1, then a workspace query is assumed; the  
 *          routine only calculates the optimal size of the IWORK array,  
 *          returns this value as the first entry of the IWORK array, and  
 *          no error message related to LIWORK is issued by XERBLA.  
 *  
 *  INFO    (output) INTEGER  
 *            =0: Successful exit.  
 *            <0: If INFO = -i, the i-th argument had an illegal value.  
 *            =1: Reordering of (A, B) failed because the transformed  
 *                matrix pair (A, B) would be too far from generalized  
 *                Schur form; the problem is very ill-conditioned.  
 *                (A, B) may have been partially reordered.  
 *                If requested, 0 is returned in DIF(*), PL and PR.  
 *  
 *  
 *  Further Details  
 *  ===============  
 *  
 *  ZTGSEN first collects the selected eigenvalues by computing unitary  
 *  U and W that move them to the top left corner of (A, B). In other  
 *  words, the selected eigenvalues are the eigenvalues of (A11, B11) in  
 *  
 *              U**H*(A, B)*W = (A11 A12) (B11 B12) n1  
 *                              ( 0  A22),( 0  B22) n2  
 *                                n1  n2    n1  n2  
 *  
 *  where N = n1+n2 and U**H means the conjugate transpose of U. The first  
 *  n1 columns of U and W span the specified pair of left and right  
 *  eigenspaces (deflating subspaces) of (A, B).  
 *  
 *  If (A, B) has been obtained from the generalized real Schur  
 *  decomposition of a matrix pair (C, D) = Q*(A, B)*Z**H, then the  
 *  reordered generalized Schur form of (C, D) is given by  
 *  
 *           (C, D) = (Q*U)*(U**H *(A, B)*W)*(Z*W)**H,  
 *  
 *  and the first n1 columns of Q*U and Z*W span the corresponding  
 *  deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).  
 *  
 *  Note that if the selected eigenvalue is sufficiently ill-conditioned,  
 *  then its value may differ significantly from its value before  
 *  reordering.  
 *  
 *  The reciprocal condition numbers of the left and right eigenspaces  
 *  spanned by the first n1 columns of U and W (or Q*U and Z*W) may  
 *  be returned in DIF(1:2), corresponding to Difu and Difl, resp.  
 *  
 *  The Difu and Difl are defined as:  
 *  
 *       Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )  
 *  and  
 *       Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],  
 *  
 *  where sigma-min(Zu) is the smallest singular value of the  
 *  (2*n1*n2)-by-(2*n1*n2) matrix  
 *  
 *       Zu = [ kron(In2, A11)  -kron(A22**H, In1) ]  
 *            [ kron(In2, B11)  -kron(B22**H, In1) ].  
 *  
 *  Here, Inx is the identity matrix of size nx and A22**H is the  
 *  conjugate transpose of A22. kron(X, Y) is the Kronecker product between  
 *  the matrices X and Y.  
 *  
 *  When DIF(2) is small, small changes in (A, B) can cause large changes  
 *  in the deflating subspace. An approximate (asymptotic) bound on the  
 *  maximum angular error in the computed deflating subspaces is  
 *  
 *       EPS * norm((A, B)) / DIF(2),  
 *  
 *  where EPS is the machine precision.  
 *  
 *  The reciprocal norm of the projectors on the left and right  
 *  eigenspaces associated with (A11, B11) may be returned in PL and PR.  
 *  They are computed as follows. First we compute L and R so that  
 *  P*(A, B)*Q is block diagonal, where  
 *  
 *       P = ( I -L ) n1           Q = ( I R ) n1  
 *           ( 0  I ) n2    and        ( 0 I ) n2  
 *             n1 n2                    n1 n2  
 *  
 *  and (L, R) is the solution to the generalized Sylvester equation  
 *  
 *       A11*R - L*A22 = -A12  
 *       B11*R - L*B22 = -B12  
 *  
 *  Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).  
 *  An approximate (asymptotic) bound on the average absolute error of  
 *  the selected eigenvalues is  
 *  
 *       EPS * norm((A, B)) / PL.  
 *  
 *  There are also global error bounds which valid for perturbations up  
 *  to a certain restriction:  A lower bound (x) on the smallest  
 *  F-norm(E,F) for which an eigenvalue of (A11, B11) may move and  
 *  coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),  
 *  (i.e. (A + E, B + F), is  
 *  
 *   x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).  
 *  
 *  An approximate bound on x can be computed from DIF(1:2), PL and PR.  
 *  
 *  If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed  
 *  (L', R') and unperturbed (L, R) left and right deflating subspaces  
 *  associated with the selected cluster in the (1,1)-blocks can be  
 *  bounded as  
 *  
 *   max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))  
 *   max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))  
 *  
 *  See LAPACK User's Guide section 4.11 or the following references  
 *  for more information.  
 *  
 *  Note that if the default method for computing the Frobenius-norm-  
 *  based estimate DIF is not wanted (see ZLATDF), then the parameter  
 *  IDIFJB (see below) should be changed from 3 to 4 (routine ZLATDF  
 *  (IJOB = 2 will be used)). See ZTGSYL for more details.  
 *  
 *  Based on contributions by  
 *     Bo Kagstrom and Peter Poromaa, Department of Computing Science,  
 *     Umea University, S-901 87 Umea, Sweden.  
 *  
 *  References  
 *  ==========  
 *  
 *  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the  
 *      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in  
 *      M.S. Moonen et al (eds), Linear Algebra for Large Scale and  
 *      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.  
 *  
 *  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified  
 *      Eigenvalues of a Regular Matrix Pair (A, B) and Condition  
 *      Estimation: Theory, Algorithms and Software, Report  
 *      UMINF - 94.04, Department of Computing Science, Umea University,  
 *      S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.  
 *      To appear in Numerical Algorithms, 1996.  
 *  
 *  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software  
 *      for Solving the Generalized Sylvester Equation and Estimating the  
 *      Separation between Regular Matrix Pairs, Report UMINF - 93.23,  
 *      Department of Computing Science, Umea University, S-901 87 Umea,  
 *      Sweden, December 1993, Revised April 1994, Also as LAPACK working  
 *      Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,  
 *      1996.  
 *  
 *  =====================================================================  *  =====================================================================
 *  *
 *     .. Parameters ..  *     .. Parameters ..

Removed from v.1.9  
changed lines
  Added in v.1.10


CVSweb interface <joel.bertrand@systella.fr>