Annotation of rpl/lapack/lapack/ztgexc.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
        !             2:      $                   LDZ, IFST, ILST, INFO )
        !             3: *
        !             4: *  -- LAPACK routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       LOGICAL            WANTQ, WANTZ
        !            11:       INTEGER            IFST, ILST, INFO, LDA, LDB, LDQ, LDZ, N
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
        !            15:      $                   Z( LDZ, * )
        !            16: *     ..
        !            17: *
        !            18: *  Purpose
        !            19: *  =======
        !            20: *
        !            21: *  ZTGEXC reorders the generalized Schur decomposition of a complex
        !            22: *  matrix pair (A,B), using an unitary equivalence transformation
        !            23: *  (A, B) := Q * (A, B) * Z', so that the diagonal block of (A, B) with
        !            24: *  row index IFST is moved to row ILST.
        !            25: *
        !            26: *  (A, B) must be in generalized Schur canonical form, that is, A and
        !            27: *  B are both upper triangular.
        !            28: *
        !            29: *  Optionally, the matrices Q and Z of generalized Schur vectors are
        !            30: *  updated.
        !            31: *
        !            32: *         Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'
        !            33: *         Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'
        !            34: *
        !            35: *  Arguments
        !            36: *  =========
        !            37: *
        !            38: *  WANTQ   (input) LOGICAL
        !            39: *          .TRUE. : update the left transformation matrix Q;
        !            40: *          .FALSE.: do not update Q.
        !            41: *
        !            42: *  WANTZ   (input) LOGICAL
        !            43: *          .TRUE. : update the right transformation matrix Z;
        !            44: *          .FALSE.: do not update Z.
        !            45: *
        !            46: *  N       (input) INTEGER
        !            47: *          The order of the matrices A and B. N >= 0.
        !            48: *
        !            49: *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
        !            50: *          On entry, the upper triangular matrix A in the pair (A, B).
        !            51: *          On exit, the updated matrix A.
        !            52: *
        !            53: *  LDA     (input)  INTEGER
        !            54: *          The leading dimension of the array A. LDA >= max(1,N).
        !            55: *
        !            56: *  B       (input/output) COMPLEX*16 array, dimension (LDB,N)
        !            57: *          On entry, the upper triangular matrix B in the pair (A, B).
        !            58: *          On exit, the updated matrix B.
        !            59: *
        !            60: *  LDB     (input)  INTEGER
        !            61: *          The leading dimension of the array B. LDB >= max(1,N).
        !            62: *
        !            63: *  Q       (input/output) COMPLEX*16 array, dimension (LDZ,N)
        !            64: *          On entry, if WANTQ = .TRUE., the unitary matrix Q.
        !            65: *          On exit, the updated matrix Q.
        !            66: *          If WANTQ = .FALSE., Q is not referenced.
        !            67: *
        !            68: *  LDQ     (input) INTEGER
        !            69: *          The leading dimension of the array Q. LDQ >= 1;
        !            70: *          If WANTQ = .TRUE., LDQ >= N.
        !            71: *
        !            72: *  Z       (input/output) COMPLEX*16 array, dimension (LDZ,N)
        !            73: *          On entry, if WANTZ = .TRUE., the unitary matrix Z.
        !            74: *          On exit, the updated matrix Z.
        !            75: *          If WANTZ = .FALSE., Z is not referenced.
        !            76: *
        !            77: *  LDZ     (input) INTEGER
        !            78: *          The leading dimension of the array Z. LDZ >= 1;
        !            79: *          If WANTZ = .TRUE., LDZ >= N.
        !            80: *
        !            81: *  IFST    (input) INTEGER
        !            82: *  ILST    (input/output) INTEGER
        !            83: *          Specify the reordering of the diagonal blocks of (A, B).
        !            84: *          The block with row index IFST is moved to row ILST, by a
        !            85: *          sequence of swapping between adjacent blocks.
        !            86: *
        !            87: *  INFO    (output) INTEGER
        !            88: *           =0:  Successful exit.
        !            89: *           <0:  if INFO = -i, the i-th argument had an illegal value.
        !            90: *           =1:  The transformed matrix pair (A, B) would be too far
        !            91: *                from generalized Schur form; the problem is ill-
        !            92: *                conditioned. (A, B) may have been partially reordered,
        !            93: *                and ILST points to the first row of the current
        !            94: *                position of the block being moved.
        !            95: *
        !            96: *
        !            97: *  Further Details
        !            98: *  ===============
        !            99: *
        !           100: *  Based on contributions by
        !           101: *     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
        !           102: *     Umea University, S-901 87 Umea, Sweden.
        !           103: *
        !           104: *  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
        !           105: *      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
        !           106: *      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
        !           107: *      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
        !           108: *
        !           109: *  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
        !           110: *      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
        !           111: *      Estimation: Theory, Algorithms and Software, Report
        !           112: *      UMINF - 94.04, Department of Computing Science, Umea University,
        !           113: *      S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.
        !           114: *      To appear in Numerical Algorithms, 1996.
        !           115: *
        !           116: *  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
        !           117: *      for Solving the Generalized Sylvester Equation and Estimating the
        !           118: *      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
        !           119: *      Department of Computing Science, Umea University, S-901 87 Umea,
        !           120: *      Sweden, December 1993, Revised April 1994, Also as LAPACK working
        !           121: *      Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
        !           122: *      1996.
        !           123: *
        !           124: *  =====================================================================
        !           125: *
        !           126: *     .. Local Scalars ..
        !           127:       INTEGER            HERE
        !           128: *     ..
        !           129: *     .. External Subroutines ..
        !           130:       EXTERNAL           XERBLA, ZTGEX2
        !           131: *     ..
        !           132: *     .. Intrinsic Functions ..
        !           133:       INTRINSIC          MAX
        !           134: *     ..
        !           135: *     .. Executable Statements ..
        !           136: *
        !           137: *     Decode and test input arguments.
        !           138:       INFO = 0
        !           139:       IF( N.LT.0 ) THEN
        !           140:          INFO = -3
        !           141:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           142:          INFO = -5
        !           143:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        !           144:          INFO = -7
        !           145:       ELSE IF( LDQ.LT.1 .OR. WANTQ .AND. ( LDQ.LT.MAX( 1, N ) ) ) THEN
        !           146:          INFO = -9
        !           147:       ELSE IF( LDZ.LT.1 .OR. WANTZ .AND. ( LDZ.LT.MAX( 1, N ) ) ) THEN
        !           148:          INFO = -11
        !           149:       ELSE IF( IFST.LT.1 .OR. IFST.GT.N ) THEN
        !           150:          INFO = -12
        !           151:       ELSE IF( ILST.LT.1 .OR. ILST.GT.N ) THEN
        !           152:          INFO = -13
        !           153:       END IF
        !           154:       IF( INFO.NE.0 ) THEN
        !           155:          CALL XERBLA( 'ZTGEXC', -INFO )
        !           156:          RETURN
        !           157:       END IF
        !           158: *
        !           159: *     Quick return if possible
        !           160: *
        !           161:       IF( N.LE.1 )
        !           162:      $   RETURN
        !           163:       IF( IFST.EQ.ILST )
        !           164:      $   RETURN
        !           165: *
        !           166:       IF( IFST.LT.ILST ) THEN
        !           167: *
        !           168:          HERE = IFST
        !           169: *
        !           170:    10    CONTINUE
        !           171: *
        !           172: *        Swap with next one below
        !           173: *
        !           174:          CALL ZTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ,
        !           175:      $                HERE, INFO )
        !           176:          IF( INFO.NE.0 ) THEN
        !           177:             ILST = HERE
        !           178:             RETURN
        !           179:          END IF
        !           180:          HERE = HERE + 1
        !           181:          IF( HERE.LT.ILST )
        !           182:      $      GO TO 10
        !           183:          HERE = HERE - 1
        !           184:       ELSE
        !           185:          HERE = IFST - 1
        !           186: *
        !           187:    20    CONTINUE
        !           188: *
        !           189: *        Swap with next one above
        !           190: *
        !           191:          CALL ZTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ,
        !           192:      $                HERE, INFO )
        !           193:          IF( INFO.NE.0 ) THEN
        !           194:             ILST = HERE
        !           195:             RETURN
        !           196:          END IF
        !           197:          HERE = HERE - 1
        !           198:          IF( HERE.GE.ILST )
        !           199:      $      GO TO 20
        !           200:          HERE = HERE + 1
        !           201:       END IF
        !           202:       ILST = HERE
        !           203:       RETURN
        !           204: *
        !           205: *     End of ZTGEXC
        !           206: *
        !           207:       END

CVSweb interface <joel.bertrand@systella.fr>