Annotation of rpl/lapack/lapack/ztgex2.f, revision 1.8

1.1       bertrand    1:       SUBROUTINE ZTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
                      2:      $                   LDZ, J1, INFO )
                      3: *
1.5       bertrand    4: *  -- LAPACK auxiliary routine (version 3.2.2) --
1.1       bertrand    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.5       bertrand    7: *     June 2010
1.1       bertrand    8: *
                      9: *     .. Scalar Arguments ..
                     10:       LOGICAL            WANTQ, WANTZ
                     11:       INTEGER            INFO, J1, LDA, LDB, LDQ, LDZ, N
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
                     15:      $                   Z( LDZ, * )
                     16: *     ..
                     17: *
                     18: *  Purpose
                     19: *  =======
                     20: *
                     21: *  ZTGEX2 swaps adjacent diagonal 1 by 1 blocks (A11,B11) and (A22,B22)
                     22: *  in an upper triangular matrix pair (A, B) by an unitary equivalence
                     23: *  transformation.
                     24: *
                     25: *  (A, B) must be in generalized Schur canonical form, that is, A and
                     26: *  B are both upper triangular.
                     27: *
                     28: *  Optionally, the matrices Q and Z of generalized Schur vectors are
                     29: *  updated.
                     30: *
                     31: *         Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'
                     32: *         Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'
                     33: *
                     34: *
                     35: *  Arguments
                     36: *  =========
                     37: *
                     38: *  WANTQ   (input) LOGICAL
                     39: *          .TRUE. : update the left transformation matrix Q;
                     40: *          .FALSE.: do not update Q.
                     41: *
                     42: *  WANTZ   (input) LOGICAL
                     43: *          .TRUE. : update the right transformation matrix Z;
                     44: *          .FALSE.: do not update Z.
                     45: *
                     46: *  N       (input) INTEGER
                     47: *          The order of the matrices A and B. N >= 0.
                     48: *
                     49: *  A       (input/output) COMPLEX*16 arrays, dimensions (LDA,N)
                     50: *          On entry, the matrix A in the pair (A, B).
                     51: *          On exit, the updated matrix A.
                     52: *
                     53: *  LDA     (input)  INTEGER
                     54: *          The leading dimension of the array A. LDA >= max(1,N).
                     55: *
                     56: *  B       (input/output) COMPLEX*16 arrays, dimensions (LDB,N)
                     57: *          On entry, the matrix B in the pair (A, B).
                     58: *          On exit, the updated matrix B.
                     59: *
                     60: *  LDB     (input)  INTEGER
                     61: *          The leading dimension of the array B. LDB >= max(1,N).
                     62: *
                     63: *  Q       (input/output) COMPLEX*16 array, dimension (LDZ,N)
                     64: *          If WANTQ = .TRUE, on entry, the unitary matrix Q. On exit,
                     65: *          the updated matrix Q.
                     66: *          Not referenced if WANTQ = .FALSE..
                     67: *
                     68: *  LDQ     (input) INTEGER
                     69: *          The leading dimension of the array Q. LDQ >= 1;
                     70: *          If WANTQ = .TRUE., LDQ >= N.
                     71: *
                     72: *  Z       (input/output) COMPLEX*16 array, dimension (LDZ,N)
                     73: *          If WANTZ = .TRUE, on entry, the unitary matrix Z. On exit,
                     74: *          the updated matrix Z.
                     75: *          Not referenced if WANTZ = .FALSE..
                     76: *
                     77: *  LDZ     (input) INTEGER
                     78: *          The leading dimension of the array Z. LDZ >= 1;
                     79: *          If WANTZ = .TRUE., LDZ >= N.
                     80: *
                     81: *  J1      (input) INTEGER
                     82: *          The index to the first block (A11, B11).
                     83: *
                     84: *  INFO    (output) INTEGER
                     85: *           =0:  Successful exit.
                     86: *           =1:  The transformed matrix pair (A, B) would be too far
                     87: *                from generalized Schur form; the problem is ill-
                     88: *                conditioned. 
                     89: *
                     90: *
                     91: *  Further Details
                     92: *  ===============
                     93: *
                     94: *  Based on contributions by
                     95: *     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
                     96: *     Umea University, S-901 87 Umea, Sweden.
                     97: *
                     98: *  In the current code both weak and strong stability tests are
                     99: *  performed. The user can omit the strong stability test by changing
                    100: *  the internal logical parameter WANDS to .FALSE.. See ref. [2] for
                    101: *  details.
                    102: *
                    103: *  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
                    104: *      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
                    105: *      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
                    106: *      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
                    107: *
                    108: *  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
                    109: *      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
                    110: *      Estimation: Theory, Algorithms and Software, Report UMINF-94.04,
                    111: *      Department of Computing Science, Umea University, S-901 87 Umea,
                    112: *      Sweden, 1994. Also as LAPACK Working Note 87. To appear in
                    113: *      Numerical Algorithms, 1996.
                    114: *
                    115: *  =====================================================================
                    116: *
                    117: *     .. Parameters ..
                    118:       COMPLEX*16         CZERO, CONE
                    119:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
                    120:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
1.5       bertrand  121:       DOUBLE PRECISION   TWENTY
                    122:       PARAMETER          ( TWENTY = 2.0D+1 )
1.1       bertrand  123:       INTEGER            LDST
                    124:       PARAMETER          ( LDST = 2 )
                    125:       LOGICAL            WANDS
                    126:       PARAMETER          ( WANDS = .TRUE. )
                    127: *     ..
                    128: *     .. Local Scalars ..
                    129:       LOGICAL            DTRONG, WEAK
                    130:       INTEGER            I, M
                    131:       DOUBLE PRECISION   CQ, CZ, EPS, SA, SB, SCALE, SMLNUM, SS, SUM,
                    132:      $                   THRESH, WS
                    133:       COMPLEX*16         CDUM, F, G, SQ, SZ
                    134: *     ..
                    135: *     .. Local Arrays ..
                    136:       COMPLEX*16         S( LDST, LDST ), T( LDST, LDST ), WORK( 8 )
                    137: *     ..
                    138: *     .. External Functions ..
                    139:       DOUBLE PRECISION   DLAMCH
                    140:       EXTERNAL           DLAMCH
                    141: *     ..
                    142: *     .. External Subroutines ..
                    143:       EXTERNAL           ZLACPY, ZLARTG, ZLASSQ, ZROT
                    144: *     ..
                    145: *     .. Intrinsic Functions ..
                    146:       INTRINSIC          ABS, DBLE, DCONJG, MAX, SQRT
                    147: *     ..
                    148: *     .. Executable Statements ..
                    149: *
                    150:       INFO = 0
                    151: *
                    152: *     Quick return if possible
                    153: *
                    154:       IF( N.LE.1 )
                    155:      $   RETURN
                    156: *
                    157:       M = LDST
                    158:       WEAK = .FALSE.
                    159:       DTRONG = .FALSE.
                    160: *
                    161: *     Make a local copy of selected block in (A, B)
                    162: *
                    163:       CALL ZLACPY( 'Full', M, M, A( J1, J1 ), LDA, S, LDST )
                    164:       CALL ZLACPY( 'Full', M, M, B( J1, J1 ), LDB, T, LDST )
                    165: *
                    166: *     Compute the threshold for testing the acceptance of swapping.
                    167: *
                    168:       EPS = DLAMCH( 'P' )
                    169:       SMLNUM = DLAMCH( 'S' ) / EPS
                    170:       SCALE = DBLE( CZERO )
                    171:       SUM = DBLE( CONE )
                    172:       CALL ZLACPY( 'Full', M, M, S, LDST, WORK, M )
                    173:       CALL ZLACPY( 'Full', M, M, T, LDST, WORK( M*M+1 ), M )
                    174:       CALL ZLASSQ( 2*M*M, WORK, 1, SCALE, SUM )
                    175:       SA = SCALE*SQRT( SUM )
1.5       bertrand  176: *
                    177: *     THRES has been changed from 
                    178: *        THRESH = MAX( TEN*EPS*SA, SMLNUM )
                    179: *     to
                    180: *        THRESH = MAX( TWENTY*EPS*SA, SMLNUM )
                    181: *     on 04/01/10.
                    182: *     "Bug" reported by Ondra Kamenik, confirmed by Julie Langou, fixed by
                    183: *     Jim Demmel and Guillaume Revy. See forum post 1783.
                    184: *
                    185:       THRESH = MAX( TWENTY*EPS*SA, SMLNUM )
1.1       bertrand  186: *
                    187: *     Compute unitary QL and RQ that swap 1-by-1 and 1-by-1 blocks
                    188: *     using Givens rotations and perform the swap tentatively.
                    189: *
                    190:       F = S( 2, 2 )*T( 1, 1 ) - T( 2, 2 )*S( 1, 1 )
                    191:       G = S( 2, 2 )*T( 1, 2 ) - T( 2, 2 )*S( 1, 2 )
                    192:       SA = ABS( S( 2, 2 ) )
                    193:       SB = ABS( T( 2, 2 ) )
                    194:       CALL ZLARTG( G, F, CZ, SZ, CDUM )
                    195:       SZ = -SZ
                    196:       CALL ZROT( 2, S( 1, 1 ), 1, S( 1, 2 ), 1, CZ, DCONJG( SZ ) )
                    197:       CALL ZROT( 2, T( 1, 1 ), 1, T( 1, 2 ), 1, CZ, DCONJG( SZ ) )
                    198:       IF( SA.GE.SB ) THEN
                    199:          CALL ZLARTG( S( 1, 1 ), S( 2, 1 ), CQ, SQ, CDUM )
                    200:       ELSE
                    201:          CALL ZLARTG( T( 1, 1 ), T( 2, 1 ), CQ, SQ, CDUM )
                    202:       END IF
                    203:       CALL ZROT( 2, S( 1, 1 ), LDST, S( 2, 1 ), LDST, CQ, SQ )
                    204:       CALL ZROT( 2, T( 1, 1 ), LDST, T( 2, 1 ), LDST, CQ, SQ )
                    205: *
                    206: *     Weak stability test: |S21| + |T21| <= O(EPS F-norm((S, T)))
                    207: *
                    208:       WS = ABS( S( 2, 1 ) ) + ABS( T( 2, 1 ) )
                    209:       WEAK = WS.LE.THRESH
                    210:       IF( .NOT.WEAK )
                    211:      $   GO TO 20
                    212: *
                    213:       IF( WANDS ) THEN
                    214: *
                    215: *        Strong stability test:
                    216: *           F-norm((A-QL'*S*QR, B-QL'*T*QR)) <= O(EPS*F-norm((A, B)))
                    217: *
                    218:          CALL ZLACPY( 'Full', M, M, S, LDST, WORK, M )
                    219:          CALL ZLACPY( 'Full', M, M, T, LDST, WORK( M*M+1 ), M )
                    220:          CALL ZROT( 2, WORK, 1, WORK( 3 ), 1, CZ, -DCONJG( SZ ) )
                    221:          CALL ZROT( 2, WORK( 5 ), 1, WORK( 7 ), 1, CZ, -DCONJG( SZ ) )
                    222:          CALL ZROT( 2, WORK, 2, WORK( 2 ), 2, CQ, -SQ )
                    223:          CALL ZROT( 2, WORK( 5 ), 2, WORK( 6 ), 2, CQ, -SQ )
                    224:          DO 10 I = 1, 2
                    225:             WORK( I ) = WORK( I ) - A( J1+I-1, J1 )
                    226:             WORK( I+2 ) = WORK( I+2 ) - A( J1+I-1, J1+1 )
                    227:             WORK( I+4 ) = WORK( I+4 ) - B( J1+I-1, J1 )
                    228:             WORK( I+6 ) = WORK( I+6 ) - B( J1+I-1, J1+1 )
                    229:    10    CONTINUE
                    230:          SCALE = DBLE( CZERO )
                    231:          SUM = DBLE( CONE )
                    232:          CALL ZLASSQ( 2*M*M, WORK, 1, SCALE, SUM )
                    233:          SS = SCALE*SQRT( SUM )
                    234:          DTRONG = SS.LE.THRESH
                    235:          IF( .NOT.DTRONG )
                    236:      $      GO TO 20
                    237:       END IF
                    238: *
                    239: *     If the swap is accepted ("weakly" and "strongly"), apply the
                    240: *     equivalence transformations to the original matrix pair (A,B)
                    241: *
                    242:       CALL ZROT( J1+1, A( 1, J1 ), 1, A( 1, J1+1 ), 1, CZ,
                    243:      $           DCONJG( SZ ) )
                    244:       CALL ZROT( J1+1, B( 1, J1 ), 1, B( 1, J1+1 ), 1, CZ,
                    245:      $           DCONJG( SZ ) )
                    246:       CALL ZROT( N-J1+1, A( J1, J1 ), LDA, A( J1+1, J1 ), LDA, CQ, SQ )
                    247:       CALL ZROT( N-J1+1, B( J1, J1 ), LDB, B( J1+1, J1 ), LDB, CQ, SQ )
                    248: *
                    249: *     Set  N1 by N2 (2,1) blocks to 0
                    250: *
                    251:       A( J1+1, J1 ) = CZERO
                    252:       B( J1+1, J1 ) = CZERO
                    253: *
                    254: *     Accumulate transformations into Q and Z if requested.
                    255: *
                    256:       IF( WANTZ )
                    257:      $   CALL ZROT( N, Z( 1, J1 ), 1, Z( 1, J1+1 ), 1, CZ,
                    258:      $              DCONJG( SZ ) )
                    259:       IF( WANTQ )
                    260:      $   CALL ZROT( N, Q( 1, J1 ), 1, Q( 1, J1+1 ), 1, CQ,
                    261:      $              DCONJG( SQ ) )
                    262: *
                    263: *     Exit with INFO = 0 if swap was successfully performed.
                    264: *
                    265:       RETURN
                    266: *
                    267: *     Exit with INFO = 1 if swap was rejected.
                    268: *
                    269:    20 CONTINUE
                    270:       INFO = 1
                    271:       RETURN
                    272: *
                    273: *     End of ZTGEX2
                    274: *
                    275:       END

CVSweb interface <joel.bertrand@systella.fr>