Annotation of rpl/lapack/lapack/ztgex2.f, revision 1.10

1.10    ! bertrand    1: *> \brief \b ZTGEX2
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZTGEX2 + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztgex2.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztgex2.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztgex2.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
        !            22: *                          LDZ, J1, INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       LOGICAL            WANTQ, WANTZ
        !            26: *       INTEGER            INFO, J1, LDA, LDB, LDQ, LDZ, N
        !            27: *       ..
        !            28: *       .. Array Arguments ..
        !            29: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
        !            30: *      $                   Z( LDZ, * )
        !            31: *       ..
        !            32: *  
        !            33: *
        !            34: *> \par Purpose:
        !            35: *  =============
        !            36: *>
        !            37: *> \verbatim
        !            38: *>
        !            39: *> ZTGEX2 swaps adjacent diagonal 1 by 1 blocks (A11,B11) and (A22,B22)
        !            40: *> in an upper triangular matrix pair (A, B) by an unitary equivalence
        !            41: *> transformation.
        !            42: *>
        !            43: *> (A, B) must be in generalized Schur canonical form, that is, A and
        !            44: *> B are both upper triangular.
        !            45: *>
        !            46: *> Optionally, the matrices Q and Z of generalized Schur vectors are
        !            47: *> updated.
        !            48: *>
        !            49: *>        Q(in) * A(in) * Z(in)**H = Q(out) * A(out) * Z(out)**H
        !            50: *>        Q(in) * B(in) * Z(in)**H = Q(out) * B(out) * Z(out)**H
        !            51: *>
        !            52: *> \endverbatim
        !            53: *
        !            54: *  Arguments:
        !            55: *  ==========
        !            56: *
        !            57: *> \param[in] WANTQ
        !            58: *> \verbatim
        !            59: *>          WANTQ is LOGICAL
        !            60: *>          .TRUE. : update the left transformation matrix Q;
        !            61: *>          .FALSE.: do not update Q.
        !            62: *> \endverbatim
        !            63: *>
        !            64: *> \param[in] WANTZ
        !            65: *> \verbatim
        !            66: *>          WANTZ is LOGICAL
        !            67: *>          .TRUE. : update the right transformation matrix Z;
        !            68: *>          .FALSE.: do not update Z.
        !            69: *> \endverbatim
        !            70: *>
        !            71: *> \param[in] N
        !            72: *> \verbatim
        !            73: *>          N is INTEGER
        !            74: *>          The order of the matrices A and B. N >= 0.
        !            75: *> \endverbatim
        !            76: *>
        !            77: *> \param[in,out] A
        !            78: *> \verbatim
        !            79: *>          A is COMPLEX*16 arrays, dimensions (LDA,N)
        !            80: *>          On entry, the matrix A in the pair (A, B).
        !            81: *>          On exit, the updated matrix A.
        !            82: *> \endverbatim
        !            83: *>
        !            84: *> \param[in] LDA
        !            85: *> \verbatim
        !            86: *>          LDA is INTEGER
        !            87: *>          The leading dimension of the array A. LDA >= max(1,N).
        !            88: *> \endverbatim
        !            89: *>
        !            90: *> \param[in,out] B
        !            91: *> \verbatim
        !            92: *>          B is COMPLEX*16 arrays, dimensions (LDB,N)
        !            93: *>          On entry, the matrix B in the pair (A, B).
        !            94: *>          On exit, the updated matrix B.
        !            95: *> \endverbatim
        !            96: *>
        !            97: *> \param[in] LDB
        !            98: *> \verbatim
        !            99: *>          LDB is INTEGER
        !           100: *>          The leading dimension of the array B. LDB >= max(1,N).
        !           101: *> \endverbatim
        !           102: *>
        !           103: *> \param[in,out] Q
        !           104: *> \verbatim
        !           105: *>          Q is COMPLEX*16 array, dimension (LDZ,N)
        !           106: *>          If WANTQ = .TRUE, on entry, the unitary matrix Q. On exit,
        !           107: *>          the updated matrix Q.
        !           108: *>          Not referenced if WANTQ = .FALSE..
        !           109: *> \endverbatim
        !           110: *>
        !           111: *> \param[in] LDQ
        !           112: *> \verbatim
        !           113: *>          LDQ is INTEGER
        !           114: *>          The leading dimension of the array Q. LDQ >= 1;
        !           115: *>          If WANTQ = .TRUE., LDQ >= N.
        !           116: *> \endverbatim
        !           117: *>
        !           118: *> \param[in,out] Z
        !           119: *> \verbatim
        !           120: *>          Z is COMPLEX*16 array, dimension (LDZ,N)
        !           121: *>          If WANTZ = .TRUE, on entry, the unitary matrix Z. On exit,
        !           122: *>          the updated matrix Z.
        !           123: *>          Not referenced if WANTZ = .FALSE..
        !           124: *> \endverbatim
        !           125: *>
        !           126: *> \param[in] LDZ
        !           127: *> \verbatim
        !           128: *>          LDZ is INTEGER
        !           129: *>          The leading dimension of the array Z. LDZ >= 1;
        !           130: *>          If WANTZ = .TRUE., LDZ >= N.
        !           131: *> \endverbatim
        !           132: *>
        !           133: *> \param[in] J1
        !           134: *> \verbatim
        !           135: *>          J1 is INTEGER
        !           136: *>          The index to the first block (A11, B11).
        !           137: *> \endverbatim
        !           138: *>
        !           139: *> \param[out] INFO
        !           140: *> \verbatim
        !           141: *>          INFO is INTEGER
        !           142: *>           =0:  Successful exit.
        !           143: *>           =1:  The transformed matrix pair (A, B) would be too far
        !           144: *>                from generalized Schur form; the problem is ill-
        !           145: *>                conditioned. 
        !           146: *> \endverbatim
        !           147: *
        !           148: *  Authors:
        !           149: *  ========
        !           150: *
        !           151: *> \author Univ. of Tennessee 
        !           152: *> \author Univ. of California Berkeley 
        !           153: *> \author Univ. of Colorado Denver 
        !           154: *> \author NAG Ltd. 
        !           155: *
        !           156: *> \date November 2011
        !           157: *
        !           158: *> \ingroup complex16GEauxiliary
        !           159: *
        !           160: *> \par Further Details:
        !           161: *  =====================
        !           162: *>
        !           163: *>  In the current code both weak and strong stability tests are
        !           164: *>  performed. The user can omit the strong stability test by changing
        !           165: *>  the internal logical parameter WANDS to .FALSE.. See ref. [2] for
        !           166: *>  details.
        !           167: *
        !           168: *> \par Contributors:
        !           169: *  ==================
        !           170: *>
        !           171: *>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
        !           172: *>     Umea University, S-901 87 Umea, Sweden.
        !           173: *
        !           174: *> \par References:
        !           175: *  ================
        !           176: *>
        !           177: *>  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
        !           178: *>      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
        !           179: *>      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
        !           180: *>      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
        !           181: *> \n
        !           182: *>  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
        !           183: *>      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
        !           184: *>      Estimation: Theory, Algorithms and Software, Report UMINF-94.04,
        !           185: *>      Department of Computing Science, Umea University, S-901 87 Umea,
        !           186: *>      Sweden, 1994. Also as LAPACK Working Note 87. To appear in
        !           187: *>      Numerical Algorithms, 1996.
        !           188: *>
        !           189: *  =====================================================================
1.1       bertrand  190:       SUBROUTINE ZTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
                    191:      $                   LDZ, J1, INFO )
                    192: *
1.10    ! bertrand  193: *  -- LAPACK auxiliary routine (version 3.4.0) --
1.1       bertrand  194: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    195: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.10    ! bertrand  196: *     November 2011
1.1       bertrand  197: *
                    198: *     .. Scalar Arguments ..
                    199:       LOGICAL            WANTQ, WANTZ
                    200:       INTEGER            INFO, J1, LDA, LDB, LDQ, LDZ, N
                    201: *     ..
                    202: *     .. Array Arguments ..
                    203:       COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
                    204:      $                   Z( LDZ, * )
                    205: *     ..
                    206: *
                    207: *  =====================================================================
                    208: *
                    209: *     .. Parameters ..
                    210:       COMPLEX*16         CZERO, CONE
                    211:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
                    212:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
1.5       bertrand  213:       DOUBLE PRECISION   TWENTY
                    214:       PARAMETER          ( TWENTY = 2.0D+1 )
1.1       bertrand  215:       INTEGER            LDST
                    216:       PARAMETER          ( LDST = 2 )
                    217:       LOGICAL            WANDS
                    218:       PARAMETER          ( WANDS = .TRUE. )
                    219: *     ..
                    220: *     .. Local Scalars ..
                    221:       LOGICAL            DTRONG, WEAK
                    222:       INTEGER            I, M
                    223:       DOUBLE PRECISION   CQ, CZ, EPS, SA, SB, SCALE, SMLNUM, SS, SUM,
                    224:      $                   THRESH, WS
                    225:       COMPLEX*16         CDUM, F, G, SQ, SZ
                    226: *     ..
                    227: *     .. Local Arrays ..
                    228:       COMPLEX*16         S( LDST, LDST ), T( LDST, LDST ), WORK( 8 )
                    229: *     ..
                    230: *     .. External Functions ..
                    231:       DOUBLE PRECISION   DLAMCH
                    232:       EXTERNAL           DLAMCH
                    233: *     ..
                    234: *     .. External Subroutines ..
                    235:       EXTERNAL           ZLACPY, ZLARTG, ZLASSQ, ZROT
                    236: *     ..
                    237: *     .. Intrinsic Functions ..
                    238:       INTRINSIC          ABS, DBLE, DCONJG, MAX, SQRT
                    239: *     ..
                    240: *     .. Executable Statements ..
                    241: *
                    242:       INFO = 0
                    243: *
                    244: *     Quick return if possible
                    245: *
                    246:       IF( N.LE.1 )
                    247:      $   RETURN
                    248: *
                    249:       M = LDST
                    250:       WEAK = .FALSE.
                    251:       DTRONG = .FALSE.
                    252: *
                    253: *     Make a local copy of selected block in (A, B)
                    254: *
                    255:       CALL ZLACPY( 'Full', M, M, A( J1, J1 ), LDA, S, LDST )
                    256:       CALL ZLACPY( 'Full', M, M, B( J1, J1 ), LDB, T, LDST )
                    257: *
                    258: *     Compute the threshold for testing the acceptance of swapping.
                    259: *
                    260:       EPS = DLAMCH( 'P' )
                    261:       SMLNUM = DLAMCH( 'S' ) / EPS
                    262:       SCALE = DBLE( CZERO )
                    263:       SUM = DBLE( CONE )
                    264:       CALL ZLACPY( 'Full', M, M, S, LDST, WORK, M )
                    265:       CALL ZLACPY( 'Full', M, M, T, LDST, WORK( M*M+1 ), M )
                    266:       CALL ZLASSQ( 2*M*M, WORK, 1, SCALE, SUM )
                    267:       SA = SCALE*SQRT( SUM )
1.5       bertrand  268: *
                    269: *     THRES has been changed from 
                    270: *        THRESH = MAX( TEN*EPS*SA, SMLNUM )
                    271: *     to
                    272: *        THRESH = MAX( TWENTY*EPS*SA, SMLNUM )
                    273: *     on 04/01/10.
                    274: *     "Bug" reported by Ondra Kamenik, confirmed by Julie Langou, fixed by
                    275: *     Jim Demmel and Guillaume Revy. See forum post 1783.
                    276: *
                    277:       THRESH = MAX( TWENTY*EPS*SA, SMLNUM )
1.1       bertrand  278: *
                    279: *     Compute unitary QL and RQ that swap 1-by-1 and 1-by-1 blocks
                    280: *     using Givens rotations and perform the swap tentatively.
                    281: *
                    282:       F = S( 2, 2 )*T( 1, 1 ) - T( 2, 2 )*S( 1, 1 )
                    283:       G = S( 2, 2 )*T( 1, 2 ) - T( 2, 2 )*S( 1, 2 )
                    284:       SA = ABS( S( 2, 2 ) )
                    285:       SB = ABS( T( 2, 2 ) )
                    286:       CALL ZLARTG( G, F, CZ, SZ, CDUM )
                    287:       SZ = -SZ
                    288:       CALL ZROT( 2, S( 1, 1 ), 1, S( 1, 2 ), 1, CZ, DCONJG( SZ ) )
                    289:       CALL ZROT( 2, T( 1, 1 ), 1, T( 1, 2 ), 1, CZ, DCONJG( SZ ) )
                    290:       IF( SA.GE.SB ) THEN
                    291:          CALL ZLARTG( S( 1, 1 ), S( 2, 1 ), CQ, SQ, CDUM )
                    292:       ELSE
                    293:          CALL ZLARTG( T( 1, 1 ), T( 2, 1 ), CQ, SQ, CDUM )
                    294:       END IF
                    295:       CALL ZROT( 2, S( 1, 1 ), LDST, S( 2, 1 ), LDST, CQ, SQ )
                    296:       CALL ZROT( 2, T( 1, 1 ), LDST, T( 2, 1 ), LDST, CQ, SQ )
                    297: *
                    298: *     Weak stability test: |S21| + |T21| <= O(EPS F-norm((S, T)))
                    299: *
                    300:       WS = ABS( S( 2, 1 ) ) + ABS( T( 2, 1 ) )
                    301:       WEAK = WS.LE.THRESH
                    302:       IF( .NOT.WEAK )
                    303:      $   GO TO 20
                    304: *
                    305:       IF( WANDS ) THEN
                    306: *
                    307: *        Strong stability test:
1.9       bertrand  308: *           F-norm((A-QL**H*S*QR, B-QL**H*T*QR)) <= O(EPS*F-norm((A, B)))
1.1       bertrand  309: *
                    310:          CALL ZLACPY( 'Full', M, M, S, LDST, WORK, M )
                    311:          CALL ZLACPY( 'Full', M, M, T, LDST, WORK( M*M+1 ), M )
                    312:          CALL ZROT( 2, WORK, 1, WORK( 3 ), 1, CZ, -DCONJG( SZ ) )
                    313:          CALL ZROT( 2, WORK( 5 ), 1, WORK( 7 ), 1, CZ, -DCONJG( SZ ) )
                    314:          CALL ZROT( 2, WORK, 2, WORK( 2 ), 2, CQ, -SQ )
                    315:          CALL ZROT( 2, WORK( 5 ), 2, WORK( 6 ), 2, CQ, -SQ )
                    316:          DO 10 I = 1, 2
                    317:             WORK( I ) = WORK( I ) - A( J1+I-1, J1 )
                    318:             WORK( I+2 ) = WORK( I+2 ) - A( J1+I-1, J1+1 )
                    319:             WORK( I+4 ) = WORK( I+4 ) - B( J1+I-1, J1 )
                    320:             WORK( I+6 ) = WORK( I+6 ) - B( J1+I-1, J1+1 )
                    321:    10    CONTINUE
                    322:          SCALE = DBLE( CZERO )
                    323:          SUM = DBLE( CONE )
                    324:          CALL ZLASSQ( 2*M*M, WORK, 1, SCALE, SUM )
                    325:          SS = SCALE*SQRT( SUM )
                    326:          DTRONG = SS.LE.THRESH
                    327:          IF( .NOT.DTRONG )
                    328:      $      GO TO 20
                    329:       END IF
                    330: *
                    331: *     If the swap is accepted ("weakly" and "strongly"), apply the
                    332: *     equivalence transformations to the original matrix pair (A,B)
                    333: *
                    334:       CALL ZROT( J1+1, A( 1, J1 ), 1, A( 1, J1+1 ), 1, CZ,
                    335:      $           DCONJG( SZ ) )
                    336:       CALL ZROT( J1+1, B( 1, J1 ), 1, B( 1, J1+1 ), 1, CZ,
                    337:      $           DCONJG( SZ ) )
                    338:       CALL ZROT( N-J1+1, A( J1, J1 ), LDA, A( J1+1, J1 ), LDA, CQ, SQ )
                    339:       CALL ZROT( N-J1+1, B( J1, J1 ), LDB, B( J1+1, J1 ), LDB, CQ, SQ )
                    340: *
                    341: *     Set  N1 by N2 (2,1) blocks to 0
                    342: *
                    343:       A( J1+1, J1 ) = CZERO
                    344:       B( J1+1, J1 ) = CZERO
                    345: *
                    346: *     Accumulate transformations into Q and Z if requested.
                    347: *
                    348:       IF( WANTZ )
                    349:      $   CALL ZROT( N, Z( 1, J1 ), 1, Z( 1, J1+1 ), 1, CZ,
                    350:      $              DCONJG( SZ ) )
                    351:       IF( WANTQ )
                    352:      $   CALL ZROT( N, Q( 1, J1 ), 1, Q( 1, J1+1 ), 1, CQ,
                    353:      $              DCONJG( SQ ) )
                    354: *
                    355: *     Exit with INFO = 0 if swap was successfully performed.
                    356: *
                    357:       RETURN
                    358: *
                    359: *     Exit with INFO = 1 if swap was rejected.
                    360: *
                    361:    20 CONTINUE
                    362:       INFO = 1
                    363:       RETURN
                    364: *
                    365: *     End of ZTGEX2
                    366: *
                    367:       END

CVSweb interface <joel.bertrand@systella.fr>