File:  [local] / rpl / lapack / lapack / ztgevc.f
Revision 1.17: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:40 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZTGEVC
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZTGEVC + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztgevc.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztgevc.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztgevc.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZTGEVC( SIDE, HOWMNY, SELECT, N, S, LDS, P, LDP, VL,
   22: *                          LDVL, VR, LDVR, MM, M, WORK, RWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          HOWMNY, SIDE
   26: *       INTEGER            INFO, LDP, LDS, LDVL, LDVR, M, MM, N
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       LOGICAL            SELECT( * )
   30: *       DOUBLE PRECISION   RWORK( * )
   31: *       COMPLEX*16         P( LDP, * ), S( LDS, * ), VL( LDVL, * ),
   32: *      $                   VR( LDVR, * ), WORK( * )
   33: *       ..
   34: *
   35: *
   36: *
   37: *> \par Purpose:
   38: *  =============
   39: *>
   40: *> \verbatim
   41: *>
   42: *> ZTGEVC computes some or all of the right and/or left eigenvectors of
   43: *> a pair of complex matrices (S,P), where S and P are upper triangular.
   44: *> Matrix pairs of this type are produced by the generalized Schur
   45: *> factorization of a complex matrix pair (A,B):
   46: *>
   47: *>    A = Q*S*Z**H,  B = Q*P*Z**H
   48: *>
   49: *> as computed by ZGGHRD + ZHGEQZ.
   50: *>
   51: *> The right eigenvector x and the left eigenvector y of (S,P)
   52: *> corresponding to an eigenvalue w are defined by:
   53: *>
   54: *>    S*x = w*P*x,  (y**H)*S = w*(y**H)*P,
   55: *>
   56: *> where y**H denotes the conjugate tranpose of y.
   57: *> The eigenvalues are not input to this routine, but are computed
   58: *> directly from the diagonal elements of S and P.
   59: *>
   60: *> This routine returns the matrices X and/or Y of right and left
   61: *> eigenvectors of (S,P), or the products Z*X and/or Q*Y,
   62: *> where Z and Q are input matrices.
   63: *> If Q and Z are the unitary factors from the generalized Schur
   64: *> factorization of a matrix pair (A,B), then Z*X and Q*Y
   65: *> are the matrices of right and left eigenvectors of (A,B).
   66: *> \endverbatim
   67: *
   68: *  Arguments:
   69: *  ==========
   70: *
   71: *> \param[in] SIDE
   72: *> \verbatim
   73: *>          SIDE is CHARACTER*1
   74: *>          = 'R': compute right eigenvectors only;
   75: *>          = 'L': compute left eigenvectors only;
   76: *>          = 'B': compute both right and left eigenvectors.
   77: *> \endverbatim
   78: *>
   79: *> \param[in] HOWMNY
   80: *> \verbatim
   81: *>          HOWMNY is CHARACTER*1
   82: *>          = 'A': compute all right and/or left eigenvectors;
   83: *>          = 'B': compute all right and/or left eigenvectors,
   84: *>                 backtransformed by the matrices in VR and/or VL;
   85: *>          = 'S': compute selected right and/or left eigenvectors,
   86: *>                 specified by the logical array SELECT.
   87: *> \endverbatim
   88: *>
   89: *> \param[in] SELECT
   90: *> \verbatim
   91: *>          SELECT is LOGICAL array, dimension (N)
   92: *>          If HOWMNY='S', SELECT specifies the eigenvectors to be
   93: *>          computed.  The eigenvector corresponding to the j-th
   94: *>          eigenvalue is computed if SELECT(j) = .TRUE..
   95: *>          Not referenced if HOWMNY = 'A' or 'B'.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] N
   99: *> \verbatim
  100: *>          N is INTEGER
  101: *>          The order of the matrices S and P.  N >= 0.
  102: *> \endverbatim
  103: *>
  104: *> \param[in] S
  105: *> \verbatim
  106: *>          S is COMPLEX*16 array, dimension (LDS,N)
  107: *>          The upper triangular matrix S from a generalized Schur
  108: *>          factorization, as computed by ZHGEQZ.
  109: *> \endverbatim
  110: *>
  111: *> \param[in] LDS
  112: *> \verbatim
  113: *>          LDS is INTEGER
  114: *>          The leading dimension of array S.  LDS >= max(1,N).
  115: *> \endverbatim
  116: *>
  117: *> \param[in] P
  118: *> \verbatim
  119: *>          P is COMPLEX*16 array, dimension (LDP,N)
  120: *>          The upper triangular matrix P from a generalized Schur
  121: *>          factorization, as computed by ZHGEQZ.  P must have real
  122: *>          diagonal elements.
  123: *> \endverbatim
  124: *>
  125: *> \param[in] LDP
  126: *> \verbatim
  127: *>          LDP is INTEGER
  128: *>          The leading dimension of array P.  LDP >= max(1,N).
  129: *> \endverbatim
  130: *>
  131: *> \param[in,out] VL
  132: *> \verbatim
  133: *>          VL is COMPLEX*16 array, dimension (LDVL,MM)
  134: *>          On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
  135: *>          contain an N-by-N matrix Q (usually the unitary matrix Q
  136: *>          of left Schur vectors returned by ZHGEQZ).
  137: *>          On exit, if SIDE = 'L' or 'B', VL contains:
  138: *>          if HOWMNY = 'A', the matrix Y of left eigenvectors of (S,P);
  139: *>          if HOWMNY = 'B', the matrix Q*Y;
  140: *>          if HOWMNY = 'S', the left eigenvectors of (S,P) specified by
  141: *>                      SELECT, stored consecutively in the columns of
  142: *>                      VL, in the same order as their eigenvalues.
  143: *>          Not referenced if SIDE = 'R'.
  144: *> \endverbatim
  145: *>
  146: *> \param[in] LDVL
  147: *> \verbatim
  148: *>          LDVL is INTEGER
  149: *>          The leading dimension of array VL.  LDVL >= 1, and if
  150: *>          SIDE = 'L' or 'l' or 'B' or 'b', LDVL >= N.
  151: *> \endverbatim
  152: *>
  153: *> \param[in,out] VR
  154: *> \verbatim
  155: *>          VR is COMPLEX*16 array, dimension (LDVR,MM)
  156: *>          On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
  157: *>          contain an N-by-N matrix Q (usually the unitary matrix Z
  158: *>          of right Schur vectors returned by ZHGEQZ).
  159: *>          On exit, if SIDE = 'R' or 'B', VR contains:
  160: *>          if HOWMNY = 'A', the matrix X of right eigenvectors of (S,P);
  161: *>          if HOWMNY = 'B', the matrix Z*X;
  162: *>          if HOWMNY = 'S', the right eigenvectors of (S,P) specified by
  163: *>                      SELECT, stored consecutively in the columns of
  164: *>                      VR, in the same order as their eigenvalues.
  165: *>          Not referenced if SIDE = 'L'.
  166: *> \endverbatim
  167: *>
  168: *> \param[in] LDVR
  169: *> \verbatim
  170: *>          LDVR is INTEGER
  171: *>          The leading dimension of the array VR.  LDVR >= 1, and if
  172: *>          SIDE = 'R' or 'B', LDVR >= N.
  173: *> \endverbatim
  174: *>
  175: *> \param[in] MM
  176: *> \verbatim
  177: *>          MM is INTEGER
  178: *>          The number of columns in the arrays VL and/or VR. MM >= M.
  179: *> \endverbatim
  180: *>
  181: *> \param[out] M
  182: *> \verbatim
  183: *>          M is INTEGER
  184: *>          The number of columns in the arrays VL and/or VR actually
  185: *>          used to store the eigenvectors.  If HOWMNY = 'A' or 'B', M
  186: *>          is set to N.  Each selected eigenvector occupies one column.
  187: *> \endverbatim
  188: *>
  189: *> \param[out] WORK
  190: *> \verbatim
  191: *>          WORK is COMPLEX*16 array, dimension (2*N)
  192: *> \endverbatim
  193: *>
  194: *> \param[out] RWORK
  195: *> \verbatim
  196: *>          RWORK is DOUBLE PRECISION array, dimension (2*N)
  197: *> \endverbatim
  198: *>
  199: *> \param[out] INFO
  200: *> \verbatim
  201: *>          INFO is INTEGER
  202: *>          = 0:  successful exit.
  203: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  204: *> \endverbatim
  205: *
  206: *  Authors:
  207: *  ========
  208: *
  209: *> \author Univ. of Tennessee
  210: *> \author Univ. of California Berkeley
  211: *> \author Univ. of Colorado Denver
  212: *> \author NAG Ltd.
  213: *
  214: *> \ingroup complex16GEcomputational
  215: *
  216: *  =====================================================================
  217:       SUBROUTINE ZTGEVC( SIDE, HOWMNY, SELECT, N, S, LDS, P, LDP, VL,
  218:      $                   LDVL, VR, LDVR, MM, M, WORK, RWORK, INFO )
  219: *
  220: *  -- LAPACK computational routine --
  221: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  222: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  223: *
  224: *     .. Scalar Arguments ..
  225:       CHARACTER          HOWMNY, SIDE
  226:       INTEGER            INFO, LDP, LDS, LDVL, LDVR, M, MM, N
  227: *     ..
  228: *     .. Array Arguments ..
  229:       LOGICAL            SELECT( * )
  230:       DOUBLE PRECISION   RWORK( * )
  231:       COMPLEX*16         P( LDP, * ), S( LDS, * ), VL( LDVL, * ),
  232:      $                   VR( LDVR, * ), WORK( * )
  233: *     ..
  234: *
  235: *
  236: *  =====================================================================
  237: *
  238: *     .. Parameters ..
  239:       DOUBLE PRECISION   ZERO, ONE
  240:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  241:       COMPLEX*16         CZERO, CONE
  242:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
  243:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
  244: *     ..
  245: *     .. Local Scalars ..
  246:       LOGICAL            COMPL, COMPR, ILALL, ILBACK, ILBBAD, ILCOMP,
  247:      $                   LSA, LSB
  248:       INTEGER            I, IBEG, IEIG, IEND, IHWMNY, IM, ISIDE, ISRC,
  249:      $                   J, JE, JR
  250:       DOUBLE PRECISION   ACOEFA, ACOEFF, ANORM, ASCALE, BCOEFA, BIG,
  251:      $                   BIGNUM, BNORM, BSCALE, DMIN, SAFMIN, SBETA,
  252:      $                   SCALE, SMALL, TEMP, ULP, XMAX
  253:       COMPLEX*16         BCOEFF, CA, CB, D, SALPHA, SUM, SUMA, SUMB, X
  254: *     ..
  255: *     .. External Functions ..
  256:       LOGICAL            LSAME
  257:       DOUBLE PRECISION   DLAMCH
  258:       COMPLEX*16         ZLADIV
  259:       EXTERNAL           LSAME, DLAMCH, ZLADIV
  260: *     ..
  261: *     .. External Subroutines ..
  262:       EXTERNAL           DLABAD, XERBLA, ZGEMV
  263: *     ..
  264: *     .. Intrinsic Functions ..
  265:       INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, MIN
  266: *     ..
  267: *     .. Statement Functions ..
  268:       DOUBLE PRECISION   ABS1
  269: *     ..
  270: *     .. Statement Function definitions ..
  271:       ABS1( X ) = ABS( DBLE( X ) ) + ABS( DIMAG( X ) )
  272: *     ..
  273: *     .. Executable Statements ..
  274: *
  275: *     Decode and Test the input parameters
  276: *
  277:       IF( LSAME( HOWMNY, 'A' ) ) THEN
  278:          IHWMNY = 1
  279:          ILALL = .TRUE.
  280:          ILBACK = .FALSE.
  281:       ELSE IF( LSAME( HOWMNY, 'S' ) ) THEN
  282:          IHWMNY = 2
  283:          ILALL = .FALSE.
  284:          ILBACK = .FALSE.
  285:       ELSE IF( LSAME( HOWMNY, 'B' ) ) THEN
  286:          IHWMNY = 3
  287:          ILALL = .TRUE.
  288:          ILBACK = .TRUE.
  289:       ELSE
  290:          IHWMNY = -1
  291:       END IF
  292: *
  293:       IF( LSAME( SIDE, 'R' ) ) THEN
  294:          ISIDE = 1
  295:          COMPL = .FALSE.
  296:          COMPR = .TRUE.
  297:       ELSE IF( LSAME( SIDE, 'L' ) ) THEN
  298:          ISIDE = 2
  299:          COMPL = .TRUE.
  300:          COMPR = .FALSE.
  301:       ELSE IF( LSAME( SIDE, 'B' ) ) THEN
  302:          ISIDE = 3
  303:          COMPL = .TRUE.
  304:          COMPR = .TRUE.
  305:       ELSE
  306:          ISIDE = -1
  307:       END IF
  308: *
  309:       INFO = 0
  310:       IF( ISIDE.LT.0 ) THEN
  311:          INFO = -1
  312:       ELSE IF( IHWMNY.LT.0 ) THEN
  313:          INFO = -2
  314:       ELSE IF( N.LT.0 ) THEN
  315:          INFO = -4
  316:       ELSE IF( LDS.LT.MAX( 1, N ) ) THEN
  317:          INFO = -6
  318:       ELSE IF( LDP.LT.MAX( 1, N ) ) THEN
  319:          INFO = -8
  320:       END IF
  321:       IF( INFO.NE.0 ) THEN
  322:          CALL XERBLA( 'ZTGEVC', -INFO )
  323:          RETURN
  324:       END IF
  325: *
  326: *     Count the number of eigenvectors
  327: *
  328:       IF( .NOT.ILALL ) THEN
  329:          IM = 0
  330:          DO 10 J = 1, N
  331:             IF( SELECT( J ) )
  332:      $         IM = IM + 1
  333:    10    CONTINUE
  334:       ELSE
  335:          IM = N
  336:       END IF
  337: *
  338: *     Check diagonal of B
  339: *
  340:       ILBBAD = .FALSE.
  341:       DO 20 J = 1, N
  342:          IF( DIMAG( P( J, J ) ).NE.ZERO )
  343:      $      ILBBAD = .TRUE.
  344:    20 CONTINUE
  345: *
  346:       IF( ILBBAD ) THEN
  347:          INFO = -7
  348:       ELSE IF( COMPL .AND. LDVL.LT.N .OR. LDVL.LT.1 ) THEN
  349:          INFO = -10
  350:       ELSE IF( COMPR .AND. LDVR.LT.N .OR. LDVR.LT.1 ) THEN
  351:          INFO = -12
  352:       ELSE IF( MM.LT.IM ) THEN
  353:          INFO = -13
  354:       END IF
  355:       IF( INFO.NE.0 ) THEN
  356:          CALL XERBLA( 'ZTGEVC', -INFO )
  357:          RETURN
  358:       END IF
  359: *
  360: *     Quick return if possible
  361: *
  362:       M = IM
  363:       IF( N.EQ.0 )
  364:      $   RETURN
  365: *
  366: *     Machine Constants
  367: *
  368:       SAFMIN = DLAMCH( 'Safe minimum' )
  369:       BIG = ONE / SAFMIN
  370:       CALL DLABAD( SAFMIN, BIG )
  371:       ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
  372:       SMALL = SAFMIN*N / ULP
  373:       BIG = ONE / SMALL
  374:       BIGNUM = ONE / ( SAFMIN*N )
  375: *
  376: *     Compute the 1-norm of each column of the strictly upper triangular
  377: *     part of A and B to check for possible overflow in the triangular
  378: *     solver.
  379: *
  380:       ANORM = ABS1( S( 1, 1 ) )
  381:       BNORM = ABS1( P( 1, 1 ) )
  382:       RWORK( 1 ) = ZERO
  383:       RWORK( N+1 ) = ZERO
  384:       DO 40 J = 2, N
  385:          RWORK( J ) = ZERO
  386:          RWORK( N+J ) = ZERO
  387:          DO 30 I = 1, J - 1
  388:             RWORK( J ) = RWORK( J ) + ABS1( S( I, J ) )
  389:             RWORK( N+J ) = RWORK( N+J ) + ABS1( P( I, J ) )
  390:    30    CONTINUE
  391:          ANORM = MAX( ANORM, RWORK( J )+ABS1( S( J, J ) ) )
  392:          BNORM = MAX( BNORM, RWORK( N+J )+ABS1( P( J, J ) ) )
  393:    40 CONTINUE
  394: *
  395:       ASCALE = ONE / MAX( ANORM, SAFMIN )
  396:       BSCALE = ONE / MAX( BNORM, SAFMIN )
  397: *
  398: *     Left eigenvectors
  399: *
  400:       IF( COMPL ) THEN
  401:          IEIG = 0
  402: *
  403: *        Main loop over eigenvalues
  404: *
  405:          DO 140 JE = 1, N
  406:             IF( ILALL ) THEN
  407:                ILCOMP = .TRUE.
  408:             ELSE
  409:                ILCOMP = SELECT( JE )
  410:             END IF
  411:             IF( ILCOMP ) THEN
  412:                IEIG = IEIG + 1
  413: *
  414:                IF( ABS1( S( JE, JE ) ).LE.SAFMIN .AND.
  415:      $             ABS( DBLE( P( JE, JE ) ) ).LE.SAFMIN ) THEN
  416: *
  417: *                 Singular matrix pencil -- return unit eigenvector
  418: *
  419:                   DO 50 JR = 1, N
  420:                      VL( JR, IEIG ) = CZERO
  421:    50             CONTINUE
  422:                   VL( IEIG, IEIG ) = CONE
  423:                   GO TO 140
  424:                END IF
  425: *
  426: *              Non-singular eigenvalue:
  427: *              Compute coefficients  a  and  b  in
  428: *                   H
  429: *                 y  ( a A - b B ) = 0
  430: *
  431:                TEMP = ONE / MAX( ABS1( S( JE, JE ) )*ASCALE,
  432:      $                ABS( DBLE( P( JE, JE ) ) )*BSCALE, SAFMIN )
  433:                SALPHA = ( TEMP*S( JE, JE ) )*ASCALE
  434:                SBETA = ( TEMP*DBLE( P( JE, JE ) ) )*BSCALE
  435:                ACOEFF = SBETA*ASCALE
  436:                BCOEFF = SALPHA*BSCALE
  437: *
  438: *              Scale to avoid underflow
  439: *
  440:                LSA = ABS( SBETA ).GE.SAFMIN .AND. ABS( ACOEFF ).LT.SMALL
  441:                LSB = ABS1( SALPHA ).GE.SAFMIN .AND. ABS1( BCOEFF ).LT.
  442:      $               SMALL
  443: *
  444:                SCALE = ONE
  445:                IF( LSA )
  446:      $            SCALE = ( SMALL / ABS( SBETA ) )*MIN( ANORM, BIG )
  447:                IF( LSB )
  448:      $            SCALE = MAX( SCALE, ( SMALL / ABS1( SALPHA ) )*
  449:      $                    MIN( BNORM, BIG ) )
  450:                IF( LSA .OR. LSB ) THEN
  451:                   SCALE = MIN( SCALE, ONE /
  452:      $                    ( SAFMIN*MAX( ONE, ABS( ACOEFF ),
  453:      $                    ABS1( BCOEFF ) ) ) )
  454:                   IF( LSA ) THEN
  455:                      ACOEFF = ASCALE*( SCALE*SBETA )
  456:                   ELSE
  457:                      ACOEFF = SCALE*ACOEFF
  458:                   END IF
  459:                   IF( LSB ) THEN
  460:                      BCOEFF = BSCALE*( SCALE*SALPHA )
  461:                   ELSE
  462:                      BCOEFF = SCALE*BCOEFF
  463:                   END IF
  464:                END IF
  465: *
  466:                ACOEFA = ABS( ACOEFF )
  467:                BCOEFA = ABS1( BCOEFF )
  468:                XMAX = ONE
  469:                DO 60 JR = 1, N
  470:                   WORK( JR ) = CZERO
  471:    60          CONTINUE
  472:                WORK( JE ) = CONE
  473:                DMIN = MAX( ULP*ACOEFA*ANORM, ULP*BCOEFA*BNORM, SAFMIN )
  474: *
  475: *                                              H
  476: *              Triangular solve of  (a A - b B)  y = 0
  477: *
  478: *                                      H
  479: *              (rowwise in  (a A - b B) , or columnwise in a A - b B)
  480: *
  481:                DO 100 J = JE + 1, N
  482: *
  483: *                 Compute
  484: *                       j-1
  485: *                 SUM = sum  conjg( a*S(k,j) - b*P(k,j) )*x(k)
  486: *                       k=je
  487: *                 (Scale if necessary)
  488: *
  489:                   TEMP = ONE / XMAX
  490:                   IF( ACOEFA*RWORK( J )+BCOEFA*RWORK( N+J ).GT.BIGNUM*
  491:      $                TEMP ) THEN
  492:                      DO 70 JR = JE, J - 1
  493:                         WORK( JR ) = TEMP*WORK( JR )
  494:    70                CONTINUE
  495:                      XMAX = ONE
  496:                   END IF
  497:                   SUMA = CZERO
  498:                   SUMB = CZERO
  499: *
  500:                   DO 80 JR = JE, J - 1
  501:                      SUMA = SUMA + DCONJG( S( JR, J ) )*WORK( JR )
  502:                      SUMB = SUMB + DCONJG( P( JR, J ) )*WORK( JR )
  503:    80             CONTINUE
  504:                   SUM = ACOEFF*SUMA - DCONJG( BCOEFF )*SUMB
  505: *
  506: *                 Form x(j) = - SUM / conjg( a*S(j,j) - b*P(j,j) )
  507: *
  508: *                 with scaling and perturbation of the denominator
  509: *
  510:                   D = DCONJG( ACOEFF*S( J, J )-BCOEFF*P( J, J ) )
  511:                   IF( ABS1( D ).LE.DMIN )
  512:      $               D = DCMPLX( DMIN )
  513: *
  514:                   IF( ABS1( D ).LT.ONE ) THEN
  515:                      IF( ABS1( SUM ).GE.BIGNUM*ABS1( D ) ) THEN
  516:                         TEMP = ONE / ABS1( SUM )
  517:                         DO 90 JR = JE, J - 1
  518:                            WORK( JR ) = TEMP*WORK( JR )
  519:    90                   CONTINUE
  520:                         XMAX = TEMP*XMAX
  521:                         SUM = TEMP*SUM
  522:                      END IF
  523:                   END IF
  524:                   WORK( J ) = ZLADIV( -SUM, D )
  525:                   XMAX = MAX( XMAX, ABS1( WORK( J ) ) )
  526:   100          CONTINUE
  527: *
  528: *              Back transform eigenvector if HOWMNY='B'.
  529: *
  530:                IF( ILBACK ) THEN
  531:                   CALL ZGEMV( 'N', N, N+1-JE, CONE, VL( 1, JE ), LDVL,
  532:      $                        WORK( JE ), 1, CZERO, WORK( N+1 ), 1 )
  533:                   ISRC = 2
  534:                   IBEG = 1
  535:                ELSE
  536:                   ISRC = 1
  537:                   IBEG = JE
  538:                END IF
  539: *
  540: *              Copy and scale eigenvector into column of VL
  541: *
  542:                XMAX = ZERO
  543:                DO 110 JR = IBEG, N
  544:                   XMAX = MAX( XMAX, ABS1( WORK( ( ISRC-1 )*N+JR ) ) )
  545:   110          CONTINUE
  546: *
  547:                IF( XMAX.GT.SAFMIN ) THEN
  548:                   TEMP = ONE / XMAX
  549:                   DO 120 JR = IBEG, N
  550:                      VL( JR, IEIG ) = TEMP*WORK( ( ISRC-1 )*N+JR )
  551:   120             CONTINUE
  552:                ELSE
  553:                   IBEG = N + 1
  554:                END IF
  555: *
  556:                DO 130 JR = 1, IBEG - 1
  557:                   VL( JR, IEIG ) = CZERO
  558:   130          CONTINUE
  559: *
  560:             END IF
  561:   140    CONTINUE
  562:       END IF
  563: *
  564: *     Right eigenvectors
  565: *
  566:       IF( COMPR ) THEN
  567:          IEIG = IM + 1
  568: *
  569: *        Main loop over eigenvalues
  570: *
  571:          DO 250 JE = N, 1, -1
  572:             IF( ILALL ) THEN
  573:                ILCOMP = .TRUE.
  574:             ELSE
  575:                ILCOMP = SELECT( JE )
  576:             END IF
  577:             IF( ILCOMP ) THEN
  578:                IEIG = IEIG - 1
  579: *
  580:                IF( ABS1( S( JE, JE ) ).LE.SAFMIN .AND.
  581:      $             ABS( DBLE( P( JE, JE ) ) ).LE.SAFMIN ) THEN
  582: *
  583: *                 Singular matrix pencil -- return unit eigenvector
  584: *
  585:                   DO 150 JR = 1, N
  586:                      VR( JR, IEIG ) = CZERO
  587:   150             CONTINUE
  588:                   VR( IEIG, IEIG ) = CONE
  589:                   GO TO 250
  590:                END IF
  591: *
  592: *              Non-singular eigenvalue:
  593: *              Compute coefficients  a  and  b  in
  594: *
  595: *              ( a A - b B ) x  = 0
  596: *
  597:                TEMP = ONE / MAX( ABS1( S( JE, JE ) )*ASCALE,
  598:      $                ABS( DBLE( P( JE, JE ) ) )*BSCALE, SAFMIN )
  599:                SALPHA = ( TEMP*S( JE, JE ) )*ASCALE
  600:                SBETA = ( TEMP*DBLE( P( JE, JE ) ) )*BSCALE
  601:                ACOEFF = SBETA*ASCALE
  602:                BCOEFF = SALPHA*BSCALE
  603: *
  604: *              Scale to avoid underflow
  605: *
  606:                LSA = ABS( SBETA ).GE.SAFMIN .AND. ABS( ACOEFF ).LT.SMALL
  607:                LSB = ABS1( SALPHA ).GE.SAFMIN .AND. ABS1( BCOEFF ).LT.
  608:      $               SMALL
  609: *
  610:                SCALE = ONE
  611:                IF( LSA )
  612:      $            SCALE = ( SMALL / ABS( SBETA ) )*MIN( ANORM, BIG )
  613:                IF( LSB )
  614:      $            SCALE = MAX( SCALE, ( SMALL / ABS1( SALPHA ) )*
  615:      $                    MIN( BNORM, BIG ) )
  616:                IF( LSA .OR. LSB ) THEN
  617:                   SCALE = MIN( SCALE, ONE /
  618:      $                    ( SAFMIN*MAX( ONE, ABS( ACOEFF ),
  619:      $                    ABS1( BCOEFF ) ) ) )
  620:                   IF( LSA ) THEN
  621:                      ACOEFF = ASCALE*( SCALE*SBETA )
  622:                   ELSE
  623:                      ACOEFF = SCALE*ACOEFF
  624:                   END IF
  625:                   IF( LSB ) THEN
  626:                      BCOEFF = BSCALE*( SCALE*SALPHA )
  627:                   ELSE
  628:                      BCOEFF = SCALE*BCOEFF
  629:                   END IF
  630:                END IF
  631: *
  632:                ACOEFA = ABS( ACOEFF )
  633:                BCOEFA = ABS1( BCOEFF )
  634:                XMAX = ONE
  635:                DO 160 JR = 1, N
  636:                   WORK( JR ) = CZERO
  637:   160          CONTINUE
  638:                WORK( JE ) = CONE
  639:                DMIN = MAX( ULP*ACOEFA*ANORM, ULP*BCOEFA*BNORM, SAFMIN )
  640: *
  641: *              Triangular solve of  (a A - b B) x = 0  (columnwise)
  642: *
  643: *              WORK(1:j-1) contains sums w,
  644: *              WORK(j+1:JE) contains x
  645: *
  646:                DO 170 JR = 1, JE - 1
  647:                   WORK( JR ) = ACOEFF*S( JR, JE ) - BCOEFF*P( JR, JE )
  648:   170          CONTINUE
  649:                WORK( JE ) = CONE
  650: *
  651:                DO 210 J = JE - 1, 1, -1
  652: *
  653: *                 Form x(j) := - w(j) / d
  654: *                 with scaling and perturbation of the denominator
  655: *
  656:                   D = ACOEFF*S( J, J ) - BCOEFF*P( J, J )
  657:                   IF( ABS1( D ).LE.DMIN )
  658:      $               D = DCMPLX( DMIN )
  659: *
  660:                   IF( ABS1( D ).LT.ONE ) THEN
  661:                      IF( ABS1( WORK( J ) ).GE.BIGNUM*ABS1( D ) ) THEN
  662:                         TEMP = ONE / ABS1( WORK( J ) )
  663:                         DO 180 JR = 1, JE
  664:                            WORK( JR ) = TEMP*WORK( JR )
  665:   180                   CONTINUE
  666:                      END IF
  667:                   END IF
  668: *
  669:                   WORK( J ) = ZLADIV( -WORK( J ), D )
  670: *
  671:                   IF( J.GT.1 ) THEN
  672: *
  673: *                    w = w + x(j)*(a S(*,j) - b P(*,j) ) with scaling
  674: *
  675:                      IF( ABS1( WORK( J ) ).GT.ONE ) THEN
  676:                         TEMP = ONE / ABS1( WORK( J ) )
  677:                         IF( ACOEFA*RWORK( J )+BCOEFA*RWORK( N+J ).GE.
  678:      $                      BIGNUM*TEMP ) THEN
  679:                            DO 190 JR = 1, JE
  680:                               WORK( JR ) = TEMP*WORK( JR )
  681:   190                      CONTINUE
  682:                         END IF
  683:                      END IF
  684: *
  685:                      CA = ACOEFF*WORK( J )
  686:                      CB = BCOEFF*WORK( J )
  687:                      DO 200 JR = 1, J - 1
  688:                         WORK( JR ) = WORK( JR ) + CA*S( JR, J ) -
  689:      $                               CB*P( JR, J )
  690:   200                CONTINUE
  691:                   END IF
  692:   210          CONTINUE
  693: *
  694: *              Back transform eigenvector if HOWMNY='B'.
  695: *
  696:                IF( ILBACK ) THEN
  697:                   CALL ZGEMV( 'N', N, JE, CONE, VR, LDVR, WORK, 1,
  698:      $                        CZERO, WORK( N+1 ), 1 )
  699:                   ISRC = 2
  700:                   IEND = N
  701:                ELSE
  702:                   ISRC = 1
  703:                   IEND = JE
  704:                END IF
  705: *
  706: *              Copy and scale eigenvector into column of VR
  707: *
  708:                XMAX = ZERO
  709:                DO 220 JR = 1, IEND
  710:                   XMAX = MAX( XMAX, ABS1( WORK( ( ISRC-1 )*N+JR ) ) )
  711:   220          CONTINUE
  712: *
  713:                IF( XMAX.GT.SAFMIN ) THEN
  714:                   TEMP = ONE / XMAX
  715:                   DO 230 JR = 1, IEND
  716:                      VR( JR, IEIG ) = TEMP*WORK( ( ISRC-1 )*N+JR )
  717:   230             CONTINUE
  718:                ELSE
  719:                   IEND = 0
  720:                END IF
  721: *
  722:                DO 240 JR = IEND + 1, N
  723:                   VR( JR, IEIG ) = CZERO
  724:   240          CONTINUE
  725: *
  726:             END IF
  727:   250    CONTINUE
  728:       END IF
  729: *
  730:       RETURN
  731: *
  732: *     End of ZTGEVC
  733: *
  734:       END

CVSweb interface <joel.bertrand@systella.fr>