File:  [local] / rpl / lapack / lapack / ztfttr.f
Revision 1.17: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:40 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZTFTTR copies a triangular matrix from the rectangular full packed format (TF) to the standard full format (TR).
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZTFTTR + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztfttr.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztfttr.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztfttr.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZTFTTR( TRANSR, UPLO, N, ARF, A, LDA, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          TRANSR, UPLO
   25: *       INTEGER            INFO, N, LDA
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       COMPLEX*16         A( 0: LDA-1, 0: * ), ARF( 0: * )
   29: *       ..
   30: *
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> ZTFTTR copies a triangular matrix A from rectangular full packed
   38: *> format (TF) to standard full format (TR).
   39: *> \endverbatim
   40: *
   41: *  Arguments:
   42: *  ==========
   43: *
   44: *> \param[in] TRANSR
   45: *> \verbatim
   46: *>          TRANSR is CHARACTER*1
   47: *>          = 'N':  ARF is in Normal format;
   48: *>          = 'C':  ARF is in Conjugate-transpose format;
   49: *> \endverbatim
   50: *>
   51: *> \param[in] UPLO
   52: *> \verbatim
   53: *>          UPLO is CHARACTER*1
   54: *>          = 'U':  A is upper triangular;
   55: *>          = 'L':  A is lower triangular.
   56: *> \endverbatim
   57: *>
   58: *> \param[in] N
   59: *> \verbatim
   60: *>          N is INTEGER
   61: *>          The order of the matrix A.  N >= 0.
   62: *> \endverbatim
   63: *>
   64: *> \param[in] ARF
   65: *> \verbatim
   66: *>          ARF is COMPLEX*16 array, dimension ( N*(N+1)/2 ),
   67: *>          On entry, the upper or lower triangular matrix A stored in
   68: *>          RFP format. For a further discussion see Notes below.
   69: *> \endverbatim
   70: *>
   71: *> \param[out] A
   72: *> \verbatim
   73: *>          A is COMPLEX*16 array, dimension ( LDA, N )
   74: *>          On exit, the triangular matrix A.  If UPLO = 'U', the
   75: *>          leading N-by-N upper triangular part of the array A contains
   76: *>          the upper triangular matrix, and the strictly lower
   77: *>          triangular part of A is not referenced.  If UPLO = 'L', the
   78: *>          leading N-by-N lower triangular part of the array A contains
   79: *>          the lower triangular matrix, and the strictly upper
   80: *>          triangular part of A is not referenced.
   81: *> \endverbatim
   82: *>
   83: *> \param[in] LDA
   84: *> \verbatim
   85: *>          LDA is INTEGER
   86: *>          The leading dimension of the array A.  LDA >= max(1,N).
   87: *> \endverbatim
   88: *>
   89: *> \param[out] INFO
   90: *> \verbatim
   91: *>          INFO is INTEGER
   92: *>          = 0:  successful exit
   93: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
   94: *> \endverbatim
   95: *
   96: *  Authors:
   97: *  ========
   98: *
   99: *> \author Univ. of Tennessee
  100: *> \author Univ. of California Berkeley
  101: *> \author Univ. of Colorado Denver
  102: *> \author NAG Ltd.
  103: *
  104: *> \ingroup complex16OTHERcomputational
  105: *
  106: *> \par Further Details:
  107: *  =====================
  108: *>
  109: *> \verbatim
  110: *>
  111: *>  We first consider Standard Packed Format when N is even.
  112: *>  We give an example where N = 6.
  113: *>
  114: *>      AP is Upper             AP is Lower
  115: *>
  116: *>   00 01 02 03 04 05       00
  117: *>      11 12 13 14 15       10 11
  118: *>         22 23 24 25       20 21 22
  119: *>            33 34 35       30 31 32 33
  120: *>               44 45       40 41 42 43 44
  121: *>                  55       50 51 52 53 54 55
  122: *>
  123: *>
  124: *>  Let TRANSR = 'N'. RFP holds AP as follows:
  125: *>  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
  126: *>  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
  127: *>  conjugate-transpose of the first three columns of AP upper.
  128: *>  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
  129: *>  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
  130: *>  conjugate-transpose of the last three columns of AP lower.
  131: *>  To denote conjugate we place -- above the element. This covers the
  132: *>  case N even and TRANSR = 'N'.
  133: *>
  134: *>         RFP A                   RFP A
  135: *>
  136: *>                                -- -- --
  137: *>        03 04 05                33 43 53
  138: *>                                   -- --
  139: *>        13 14 15                00 44 54
  140: *>                                      --
  141: *>        23 24 25                10 11 55
  142: *>
  143: *>        33 34 35                20 21 22
  144: *>        --
  145: *>        00 44 45                30 31 32
  146: *>        -- --
  147: *>        01 11 55                40 41 42
  148: *>        -- -- --
  149: *>        02 12 22                50 51 52
  150: *>
  151: *>  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
  152: *>  transpose of RFP A above. One therefore gets:
  153: *>
  154: *>
  155: *>           RFP A                   RFP A
  156: *>
  157: *>     -- -- -- --                -- -- -- -- -- --
  158: *>     03 13 23 33 00 01 02    33 00 10 20 30 40 50
  159: *>     -- -- -- -- --                -- -- -- -- --
  160: *>     04 14 24 34 44 11 12    43 44 11 21 31 41 51
  161: *>     -- -- -- -- -- --                -- -- -- --
  162: *>     05 15 25 35 45 55 22    53 54 55 22 32 42 52
  163: *>
  164: *>
  165: *>  We next  consider Standard Packed Format when N is odd.
  166: *>  We give an example where N = 5.
  167: *>
  168: *>     AP is Upper                 AP is Lower
  169: *>
  170: *>   00 01 02 03 04              00
  171: *>      11 12 13 14              10 11
  172: *>         22 23 24              20 21 22
  173: *>            33 34              30 31 32 33
  174: *>               44              40 41 42 43 44
  175: *>
  176: *>
  177: *>  Let TRANSR = 'N'. RFP holds AP as follows:
  178: *>  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  179: *>  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  180: *>  conjugate-transpose of the first two   columns of AP upper.
  181: *>  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  182: *>  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  183: *>  conjugate-transpose of the last two   columns of AP lower.
  184: *>  To denote conjugate we place -- above the element. This covers the
  185: *>  case N odd  and TRANSR = 'N'.
  186: *>
  187: *>         RFP A                   RFP A
  188: *>
  189: *>                                   -- --
  190: *>        02 03 04                00 33 43
  191: *>                                      --
  192: *>        12 13 14                10 11 44
  193: *>
  194: *>        22 23 24                20 21 22
  195: *>        --
  196: *>        00 33 34                30 31 32
  197: *>        -- --
  198: *>        01 11 44                40 41 42
  199: *>
  200: *>  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
  201: *>  transpose of RFP A above. One therefore gets:
  202: *>
  203: *>
  204: *>           RFP A                   RFP A
  205: *>
  206: *>     -- -- --                   -- -- -- -- -- --
  207: *>     02 12 22 00 01             00 10 20 30 40 50
  208: *>     -- -- -- --                   -- -- -- -- --
  209: *>     03 13 23 33 11             33 11 21 31 41 51
  210: *>     -- -- -- -- --                   -- -- -- --
  211: *>     04 14 24 34 44             43 44 22 32 42 52
  212: *> \endverbatim
  213: *>
  214: *  =====================================================================
  215:       SUBROUTINE ZTFTTR( TRANSR, UPLO, N, ARF, A, LDA, INFO )
  216: *
  217: *  -- LAPACK computational routine --
  218: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  219: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  220: *
  221: *     .. Scalar Arguments ..
  222:       CHARACTER          TRANSR, UPLO
  223:       INTEGER            INFO, N, LDA
  224: *     ..
  225: *     .. Array Arguments ..
  226:       COMPLEX*16         A( 0: LDA-1, 0: * ), ARF( 0: * )
  227: *     ..
  228: *
  229: *  =====================================================================
  230: *
  231: *     .. Parameters ..
  232: *     ..
  233: *     .. Local Scalars ..
  234:       LOGICAL            LOWER, NISODD, NORMALTRANSR
  235:       INTEGER            N1, N2, K, NT, NX2, NP1X2
  236:       INTEGER            I, J, L, IJ
  237: *     ..
  238: *     .. External Functions ..
  239:       LOGICAL            LSAME
  240:       EXTERNAL           LSAME
  241: *     ..
  242: *     .. External Subroutines ..
  243:       EXTERNAL           XERBLA
  244: *     ..
  245: *     .. Intrinsic Functions ..
  246:       INTRINSIC          DCONJG, MAX, MOD
  247: *     ..
  248: *     .. Executable Statements ..
  249: *
  250: *     Test the input parameters.
  251: *
  252:       INFO = 0
  253:       NORMALTRANSR = LSAME( TRANSR, 'N' )
  254:       LOWER = LSAME( UPLO, 'L' )
  255:       IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN
  256:          INFO = -1
  257:       ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  258:          INFO = -2
  259:       ELSE IF( N.LT.0 ) THEN
  260:          INFO = -3
  261:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  262:          INFO = -6
  263:       END IF
  264:       IF( INFO.NE.0 ) THEN
  265:          CALL XERBLA( 'ZTFTTR', -INFO )
  266:          RETURN
  267:       END IF
  268: *
  269: *     Quick return if possible
  270: *
  271:       IF( N.LE.1 ) THEN
  272:          IF( N.EQ.1 ) THEN
  273:             IF( NORMALTRANSR ) THEN
  274:                A( 0, 0 ) = ARF( 0 )
  275:             ELSE
  276:                A( 0, 0 ) = DCONJG( ARF( 0 ) )
  277:             END IF
  278:          END IF
  279:          RETURN
  280:       END IF
  281: *
  282: *     Size of array ARF(1:2,0:nt-1)
  283: *
  284:       NT = N*( N+1 ) / 2
  285: *
  286: *     set N1 and N2 depending on LOWER: for N even N1=N2=K
  287: *
  288:       IF( LOWER ) THEN
  289:          N2 = N / 2
  290:          N1 = N - N2
  291:       ELSE
  292:          N1 = N / 2
  293:          N2 = N - N1
  294:       END IF
  295: *
  296: *     If N is odd, set NISODD = .TRUE., LDA=N+1 and A is (N+1)--by--K2.
  297: *     If N is even, set K = N/2 and NISODD = .FALSE., LDA=N and A is
  298: *     N--by--(N+1)/2.
  299: *
  300:       IF( MOD( N, 2 ).EQ.0 ) THEN
  301:          K = N / 2
  302:          NISODD = .FALSE.
  303:          IF( .NOT.LOWER )
  304:      $      NP1X2 = N + N + 2
  305:       ELSE
  306:          NISODD = .TRUE.
  307:          IF( .NOT.LOWER )
  308:      $      NX2 = N + N
  309:       END IF
  310: *
  311:       IF( NISODD ) THEN
  312: *
  313: *        N is odd
  314: *
  315:          IF( NORMALTRANSR ) THEN
  316: *
  317: *           N is odd and TRANSR = 'N'
  318: *
  319:             IF( LOWER ) THEN
  320: *
  321: *             SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
  322: *             T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
  323: *             T1 -> a(0), T2 -> a(n), S -> a(n1); lda=n
  324: *
  325:                IJ = 0
  326:                DO J = 0, N2
  327:                   DO I = N1, N2 + J
  328:                      A( N2+J, I ) = DCONJG( ARF( IJ ) )
  329:                      IJ = IJ + 1
  330:                   END DO
  331:                   DO I = J, N - 1
  332:                      A( I, J ) = ARF( IJ )
  333:                      IJ = IJ + 1
  334:                   END DO
  335:                END DO
  336: *
  337:             ELSE
  338: *
  339: *             SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
  340: *             T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
  341: *             T1 -> a(n2), T2 -> a(n1), S -> a(0); lda=n
  342: *
  343:                IJ = NT - N
  344:                DO J = N - 1, N1, -1
  345:                   DO I = 0, J
  346:                      A( I, J ) = ARF( IJ )
  347:                      IJ = IJ + 1
  348:                   END DO
  349:                   DO L = J - N1, N1 - 1
  350:                      A( J-N1, L ) = DCONJG( ARF( IJ ) )
  351:                      IJ = IJ + 1
  352:                   END DO
  353:                   IJ = IJ - NX2
  354:                END DO
  355: *
  356:             END IF
  357: *
  358:          ELSE
  359: *
  360: *           N is odd and TRANSR = 'C'
  361: *
  362:             IF( LOWER ) THEN
  363: *
  364: *              SRPA for LOWER, TRANSPOSE and N is odd
  365: *              T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1)
  366: *              T1 -> A(0+0) , T2 -> A(1+0) , S -> A(0+n1*n1); lda=n1
  367: *
  368:                IJ = 0
  369:                DO J = 0, N2 - 1
  370:                   DO I = 0, J
  371:                      A( J, I ) = DCONJG( ARF( IJ ) )
  372:                      IJ = IJ + 1
  373:                   END DO
  374:                   DO I = N1 + J, N - 1
  375:                      A( I, N1+J ) = ARF( IJ )
  376:                      IJ = IJ + 1
  377:                   END DO
  378:                END DO
  379:                DO J = N2, N - 1
  380:                   DO I = 0, N1 - 1
  381:                      A( J, I ) = DCONJG( ARF( IJ ) )
  382:                      IJ = IJ + 1
  383:                   END DO
  384:                END DO
  385: *
  386:             ELSE
  387: *
  388: *              SRPA for UPPER, TRANSPOSE and N is odd
  389: *              T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0)
  390: *              T1 -> A(n2*n2), T2 -> A(n1*n2), S -> A(0); lda = n2
  391: *
  392:                IJ = 0
  393:                DO J = 0, N1
  394:                   DO I = N1, N - 1
  395:                      A( J, I ) = DCONJG( ARF( IJ ) )
  396:                      IJ = IJ + 1
  397:                   END DO
  398:                END DO
  399:                DO J = 0, N1 - 1
  400:                   DO I = 0, J
  401:                      A( I, J ) = ARF( IJ )
  402:                      IJ = IJ + 1
  403:                   END DO
  404:                   DO L = N2 + J, N - 1
  405:                      A( N2+J, L ) = DCONJG( ARF( IJ ) )
  406:                      IJ = IJ + 1
  407:                   END DO
  408:                END DO
  409: *
  410:             END IF
  411: *
  412:          END IF
  413: *
  414:       ELSE
  415: *
  416: *        N is even
  417: *
  418:          IF( NORMALTRANSR ) THEN
  419: *
  420: *           N is even and TRANSR = 'N'
  421: *
  422:             IF( LOWER ) THEN
  423: *
  424: *              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
  425: *              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
  426: *              T1 -> a(1), T2 -> a(0), S -> a(k+1); lda=n+1
  427: *
  428:                IJ = 0
  429:                DO J = 0, K - 1
  430:                   DO I = K, K + J
  431:                      A( K+J, I ) = DCONJG( ARF( IJ ) )
  432:                      IJ = IJ + 1
  433:                   END DO
  434:                   DO I = J, N - 1
  435:                      A( I, J ) = ARF( IJ )
  436:                      IJ = IJ + 1
  437:                   END DO
  438:                END DO
  439: *
  440:             ELSE
  441: *
  442: *              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
  443: *              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0)
  444: *              T1 -> a(k+1), T2 -> a(k), S -> a(0); lda=n+1
  445: *
  446:                IJ = NT - N - 1
  447:                DO J = N - 1, K, -1
  448:                   DO I = 0, J
  449:                      A( I, J ) = ARF( IJ )
  450:                      IJ = IJ + 1
  451:                   END DO
  452:                   DO L = J - K, K - 1
  453:                      A( J-K, L ) = DCONJG( ARF( IJ ) )
  454:                      IJ = IJ + 1
  455:                   END DO
  456:                   IJ = IJ - NP1X2
  457:                END DO
  458: *
  459:             END IF
  460: *
  461:          ELSE
  462: *
  463: *           N is even and TRANSR = 'C'
  464: *
  465:             IF( LOWER ) THEN
  466: *
  467: *              SRPA for LOWER, TRANSPOSE and N is even (see paper, A=B)
  468: *              T1 -> A(0,1) , T2 -> A(0,0) , S -> A(0,k+1) :
  469: *              T1 -> A(0+k) , T2 -> A(0+0) , S -> A(0+k*(k+1)); lda=k
  470: *
  471:                IJ = 0
  472:                J = K
  473:                DO I = K, N - 1
  474:                   A( I, J ) = ARF( IJ )
  475:                   IJ = IJ + 1
  476:                END DO
  477:                DO J = 0, K - 2
  478:                   DO I = 0, J
  479:                      A( J, I ) = DCONJG( ARF( IJ ) )
  480:                      IJ = IJ + 1
  481:                   END DO
  482:                   DO I = K + 1 + J, N - 1
  483:                      A( I, K+1+J ) = ARF( IJ )
  484:                      IJ = IJ + 1
  485:                   END DO
  486:                END DO
  487:                DO J = K - 1, N - 1
  488:                   DO I = 0, K - 1
  489:                      A( J, I ) = DCONJG( ARF( IJ ) )
  490:                      IJ = IJ + 1
  491:                   END DO
  492:                END DO
  493: *
  494:             ELSE
  495: *
  496: *              SRPA for UPPER, TRANSPOSE and N is even (see paper, A=B)
  497: *              T1 -> A(0,k+1) , T2 -> A(0,k) , S -> A(0,0)
  498: *              T1 -> A(0+k*(k+1)) , T2 -> A(0+k*k) , S -> A(0+0)); lda=k
  499: *
  500:                IJ = 0
  501:                DO J = 0, K
  502:                   DO I = K, N - 1
  503:                      A( J, I ) = DCONJG( ARF( IJ ) )
  504:                      IJ = IJ + 1
  505:                   END DO
  506:                END DO
  507:                DO J = 0, K - 2
  508:                   DO I = 0, J
  509:                      A( I, J ) = ARF( IJ )
  510:                      IJ = IJ + 1
  511:                   END DO
  512:                   DO L = K + 1 + J, N - 1
  513:                      A( K+1+J, L ) = DCONJG( ARF( IJ ) )
  514:                      IJ = IJ + 1
  515:                   END DO
  516:                END DO
  517: *
  518: *              Note that here J = K-1
  519: *
  520:                DO I = 0, J
  521:                   A( I, J ) = ARF( IJ )
  522:                   IJ = IJ + 1
  523:                END DO
  524: *
  525:             END IF
  526: *
  527:          END IF
  528: *
  529:       END IF
  530: *
  531:       RETURN
  532: *
  533: *     End of ZTFTTR
  534: *
  535:       END

CVSweb interface <joel.bertrand@systella.fr>