File:  [local] / rpl / lapack / lapack / ztftri.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Tue Dec 21 13:53:56 2010 UTC (13 years, 4 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_0, rpl-4_0_24, rpl-4_0_22, rpl-4_0_21, rpl-4_0_20, rpl-4_0, HEAD
Mise à jour de lapack vers la version 3.3.0.

    1:       SUBROUTINE ZTFTRI( TRANSR, UPLO, DIAG, N, A, INFO )
    2: *
    3: *  -- LAPACK routine (version 3.3.0)                                    --
    4: *
    5: *  -- Contributed by Fred Gustavson of the IBM Watson Research Center --
    6: *     November 2010
    7: *
    8: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    9: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
   10: *
   11: *     .. Scalar Arguments ..
   12:       CHARACTER          TRANSR, UPLO, DIAG
   13:       INTEGER            INFO, N
   14: *     ..
   15: *     .. Array Arguments ..
   16:       COMPLEX*16         A( 0: * )
   17: *     ..
   18: *
   19: *  Purpose
   20: *  =======
   21: *
   22: *  ZTFTRI computes the inverse of a triangular matrix A stored in RFP
   23: *  format.
   24: *
   25: *  This is a Level 3 BLAS version of the algorithm.
   26: *
   27: *  Arguments
   28: *  =========
   29: *
   30: *  TRANSR    (input) CHARACTER*1
   31: *          = 'N':  The Normal TRANSR of RFP A is stored;
   32: *          = 'C':  The Conjugate-transpose TRANSR of RFP A is stored.
   33: *
   34: *  UPLO    (input) CHARACTER*1
   35: *          = 'U':  A is upper triangular;
   36: *          = 'L':  A is lower triangular.
   37: *
   38: *  DIAG    (input) CHARACTER*1
   39: *          = 'N':  A is non-unit triangular;
   40: *          = 'U':  A is unit triangular.
   41: *
   42: *  N       (input) INTEGER
   43: *          The order of the matrix A.  N >= 0.
   44: *
   45: *  A       (input/output) COMPLEX*16 array, dimension ( N*(N+1)/2 );
   46: *          On entry, the triangular matrix A in RFP format. RFP format
   47: *          is described by TRANSR, UPLO, and N as follows: If TRANSR =
   48: *          'N' then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
   49: *          (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'C' then RFP is
   50: *          the Conjugate-transpose of RFP A as defined when
   51: *          TRANSR = 'N'. The contents of RFP A are defined by UPLO as
   52: *          follows: If UPLO = 'U' the RFP A contains the nt elements of
   53: *          upper packed A; If UPLO = 'L' the RFP A contains the nt
   54: *          elements of lower packed A. The LDA of RFP A is (N+1)/2 when
   55: *          TRANSR = 'C'. When TRANSR is 'N' the LDA is N+1 when N is
   56: *          even and N is odd. See the Note below for more details.
   57: *
   58: *          On exit, the (triangular) inverse of the original matrix, in
   59: *          the same storage format.
   60: *
   61: *  INFO    (output) INTEGER
   62: *          = 0: successful exit
   63: *          < 0: if INFO = -i, the i-th argument had an illegal value
   64: *          > 0: if INFO = i, A(i,i) is exactly zero.  The triangular
   65: *               matrix is singular and its inverse can not be computed.
   66: *
   67: *  Further Details
   68: *  ===============
   69: *
   70: *  We first consider Standard Packed Format when N is even.
   71: *  We give an example where N = 6.
   72: *
   73: *      AP is Upper             AP is Lower
   74: *
   75: *   00 01 02 03 04 05       00
   76: *      11 12 13 14 15       10 11
   77: *         22 23 24 25       20 21 22
   78: *            33 34 35       30 31 32 33
   79: *               44 45       40 41 42 43 44
   80: *                  55       50 51 52 53 54 55
   81: *
   82: *
   83: *  Let TRANSR = 'N'. RFP holds AP as follows:
   84: *  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
   85: *  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
   86: *  conjugate-transpose of the first three columns of AP upper.
   87: *  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
   88: *  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
   89: *  conjugate-transpose of the last three columns of AP lower.
   90: *  To denote conjugate we place -- above the element. This covers the
   91: *  case N even and TRANSR = 'N'.
   92: *
   93: *         RFP A                   RFP A
   94: *
   95: *                                -- -- --
   96: *        03 04 05                33 43 53
   97: *                                   -- --
   98: *        13 14 15                00 44 54
   99: *                                      --
  100: *        23 24 25                10 11 55
  101: *
  102: *        33 34 35                20 21 22
  103: *        --
  104: *        00 44 45                30 31 32
  105: *        -- --
  106: *        01 11 55                40 41 42
  107: *        -- -- --
  108: *        02 12 22                50 51 52
  109: *
  110: *  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
  111: *  transpose of RFP A above. One therefore gets:
  112: *
  113: *
  114: *           RFP A                   RFP A
  115: *
  116: *     -- -- -- --                -- -- -- -- -- --
  117: *     03 13 23 33 00 01 02    33 00 10 20 30 40 50
  118: *     -- -- -- -- --                -- -- -- -- --
  119: *     04 14 24 34 44 11 12    43 44 11 21 31 41 51
  120: *     -- -- -- -- -- --                -- -- -- --
  121: *     05 15 25 35 45 55 22    53 54 55 22 32 42 52
  122: *
  123: *
  124: *  We next  consider Standard Packed Format when N is odd.
  125: *  We give an example where N = 5.
  126: *
  127: *     AP is Upper                 AP is Lower
  128: *
  129: *   00 01 02 03 04              00
  130: *      11 12 13 14              10 11
  131: *         22 23 24              20 21 22
  132: *            33 34              30 31 32 33
  133: *               44              40 41 42 43 44
  134: *
  135: *
  136: *  Let TRANSR = 'N'. RFP holds AP as follows:
  137: *  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  138: *  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  139: *  conjugate-transpose of the first two   columns of AP upper.
  140: *  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  141: *  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  142: *  conjugate-transpose of the last two   columns of AP lower.
  143: *  To denote conjugate we place -- above the element. This covers the
  144: *  case N odd  and TRANSR = 'N'.
  145: *
  146: *         RFP A                   RFP A
  147: *
  148: *                                   -- --
  149: *        02 03 04                00 33 43
  150: *                                      --
  151: *        12 13 14                10 11 44
  152: *
  153: *        22 23 24                20 21 22
  154: *        --
  155: *        00 33 34                30 31 32
  156: *        -- --
  157: *        01 11 44                40 41 42
  158: *
  159: *  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
  160: *  transpose of RFP A above. One therefore gets:
  161: *
  162: *
  163: *           RFP A                   RFP A
  164: *
  165: *     -- -- --                   -- -- -- -- -- --
  166: *     02 12 22 00 01             00 10 20 30 40 50
  167: *     -- -- -- --                   -- -- -- -- --
  168: *     03 13 23 33 11             33 11 21 31 41 51
  169: *     -- -- -- -- --                   -- -- -- --
  170: *     04 14 24 34 44             43 44 22 32 42 52
  171: *
  172: *  =====================================================================
  173: *
  174: *     .. Parameters ..
  175:       COMPLEX*16         CONE
  176:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  177: *     ..
  178: *     .. Local Scalars ..
  179:       LOGICAL            LOWER, NISODD, NORMALTRANSR
  180:       INTEGER            N1, N2, K
  181: *     ..
  182: *     .. External Functions ..
  183:       LOGICAL            LSAME
  184:       EXTERNAL           LSAME
  185: *     ..
  186: *     .. External Subroutines ..
  187:       EXTERNAL           XERBLA, ZTRMM, ZTRTRI
  188: *     ..
  189: *     .. Intrinsic Functions ..
  190:       INTRINSIC          MOD
  191: *     ..
  192: *     .. Executable Statements ..
  193: *
  194: *     Test the input parameters.
  195: *
  196:       INFO = 0
  197:       NORMALTRANSR = LSAME( TRANSR, 'N' )
  198:       LOWER = LSAME( UPLO, 'L' )
  199:       IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN
  200:          INFO = -1
  201:       ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  202:          INFO = -2
  203:       ELSE IF( .NOT.LSAME( DIAG, 'N' ) .AND. .NOT.LSAME( DIAG, 'U' ) )
  204:      +         THEN
  205:          INFO = -3
  206:       ELSE IF( N.LT.0 ) THEN
  207:          INFO = -4
  208:       END IF
  209:       IF( INFO.NE.0 ) THEN
  210:          CALL XERBLA( 'ZTFTRI', -INFO )
  211:          RETURN
  212:       END IF
  213: *
  214: *     Quick return if possible
  215: *
  216:       IF( N.EQ.0 )
  217:      +   RETURN
  218: *
  219: *     If N is odd, set NISODD = .TRUE.
  220: *     If N is even, set K = N/2 and NISODD = .FALSE.
  221: *
  222:       IF( MOD( N, 2 ).EQ.0 ) THEN
  223:          K = N / 2
  224:          NISODD = .FALSE.
  225:       ELSE
  226:          NISODD = .TRUE.
  227:       END IF
  228: *
  229: *     Set N1 and N2 depending on LOWER
  230: *
  231:       IF( LOWER ) THEN
  232:          N2 = N / 2
  233:          N1 = N - N2
  234:       ELSE
  235:          N1 = N / 2
  236:          N2 = N - N1
  237:       END IF
  238: *
  239: *
  240: *     start execution: there are eight cases
  241: *
  242:       IF( NISODD ) THEN
  243: *
  244: *        N is odd
  245: *
  246:          IF( NORMALTRANSR ) THEN
  247: *
  248: *           N is odd and TRANSR = 'N'
  249: *
  250:             IF( LOWER ) THEN
  251: *
  252: *             SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
  253: *             T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
  254: *             T1 -> a(0), T2 -> a(n), S -> a(n1)
  255: *
  256:                CALL ZTRTRI( 'L', DIAG, N1, A( 0 ), N, INFO )
  257:                IF( INFO.GT.0 )
  258:      +            RETURN
  259:                CALL ZTRMM( 'R', 'L', 'N', DIAG, N2, N1, -CONE, A( 0 ),
  260:      +                     N, A( N1 ), N )
  261:                CALL ZTRTRI( 'U', DIAG, N2, A( N ), N, INFO )
  262:                IF( INFO.GT.0 )
  263:      +            INFO = INFO + N1
  264:                IF( INFO.GT.0 )
  265:      +            RETURN
  266:                CALL ZTRMM( 'L', 'U', 'C', DIAG, N2, N1, CONE, A( N ), N,
  267:      +                     A( N1 ), N )
  268: *
  269:             ELSE
  270: *
  271: *             SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
  272: *             T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
  273: *             T1 -> a(n2), T2 -> a(n1), S -> a(0)
  274: *
  275:                CALL ZTRTRI( 'L', DIAG, N1, A( N2 ), N, INFO )
  276:                IF( INFO.GT.0 )
  277:      +            RETURN
  278:                CALL ZTRMM( 'L', 'L', 'C', DIAG, N1, N2, -CONE, A( N2 ),
  279:      +                     N, A( 0 ), N )
  280:                CALL ZTRTRI( 'U', DIAG, N2, A( N1 ), N, INFO )
  281:                IF( INFO.GT.0 )
  282:      +            INFO = INFO + N1
  283:                IF( INFO.GT.0 )
  284:      +            RETURN
  285:                CALL ZTRMM( 'R', 'U', 'N', DIAG, N1, N2, CONE, A( N1 ),
  286:      +                     N, A( 0 ), N )
  287: *
  288:             END IF
  289: *
  290:          ELSE
  291: *
  292: *           N is odd and TRANSR = 'C'
  293: *
  294:             IF( LOWER ) THEN
  295: *
  296: *              SRPA for LOWER, TRANSPOSE and N is odd
  297: *              T1 -> a(0), T2 -> a(1), S -> a(0+n1*n1)
  298: *
  299:                CALL ZTRTRI( 'U', DIAG, N1, A( 0 ), N1, INFO )
  300:                IF( INFO.GT.0 )
  301:      +            RETURN
  302:                CALL ZTRMM( 'L', 'U', 'N', DIAG, N1, N2, -CONE, A( 0 ),
  303:      +                     N1, A( N1*N1 ), N1 )
  304:                CALL ZTRTRI( 'L', DIAG, N2, A( 1 ), N1, INFO )
  305:                IF( INFO.GT.0 )
  306:      +            INFO = INFO + N1
  307:                IF( INFO.GT.0 )
  308:      +            RETURN
  309:                CALL ZTRMM( 'R', 'L', 'C', DIAG, N1, N2, CONE, A( 1 ),
  310:      +                     N1, A( N1*N1 ), N1 )
  311: *
  312:             ELSE
  313: *
  314: *              SRPA for UPPER, TRANSPOSE and N is odd
  315: *              T1 -> a(0+n2*n2), T2 -> a(0+n1*n2), S -> a(0)
  316: *
  317:                CALL ZTRTRI( 'U', DIAG, N1, A( N2*N2 ), N2, INFO )
  318:                IF( INFO.GT.0 )
  319:      +            RETURN
  320:                CALL ZTRMM( 'R', 'U', 'C', DIAG, N2, N1, -CONE,
  321:      +                     A( N2*N2 ), N2, A( 0 ), N2 )
  322:                CALL ZTRTRI( 'L', DIAG, N2, A( N1*N2 ), N2, INFO )
  323:                IF( INFO.GT.0 )
  324:      +            INFO = INFO + N1
  325:                IF( INFO.GT.0 )
  326:      +            RETURN
  327:                CALL ZTRMM( 'L', 'L', 'N', DIAG, N2, N1, CONE,
  328:      +                     A( N1*N2 ), N2, A( 0 ), N2 )
  329:             END IF
  330: *
  331:          END IF
  332: *
  333:       ELSE
  334: *
  335: *        N is even
  336: *
  337:          IF( NORMALTRANSR ) THEN
  338: *
  339: *           N is even and TRANSR = 'N'
  340: *
  341:             IF( LOWER ) THEN
  342: *
  343: *              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
  344: *              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
  345: *              T1 -> a(1), T2 -> a(0), S -> a(k+1)
  346: *
  347:                CALL ZTRTRI( 'L', DIAG, K, A( 1 ), N+1, INFO )
  348:                IF( INFO.GT.0 )
  349:      +            RETURN
  350:                CALL ZTRMM( 'R', 'L', 'N', DIAG, K, K, -CONE, A( 1 ),
  351:      +                     N+1, A( K+1 ), N+1 )
  352:                CALL ZTRTRI( 'U', DIAG, K, A( 0 ), N+1, INFO )
  353:                IF( INFO.GT.0 )
  354:      +            INFO = INFO + K
  355:                IF( INFO.GT.0 )
  356:      +            RETURN
  357:                CALL ZTRMM( 'L', 'U', 'C', DIAG, K, K, CONE, A( 0 ), N+1,
  358:      +                     A( K+1 ), N+1 )
  359: *
  360:             ELSE
  361: *
  362: *              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
  363: *              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0)
  364: *              T1 -> a(k+1), T2 -> a(k), S -> a(0)
  365: *
  366:                CALL ZTRTRI( 'L', DIAG, K, A( K+1 ), N+1, INFO )
  367:                IF( INFO.GT.0 )
  368:      +            RETURN
  369:                CALL ZTRMM( 'L', 'L', 'C', DIAG, K, K, -CONE, A( K+1 ),
  370:      +                     N+1, A( 0 ), N+1 )
  371:                CALL ZTRTRI( 'U', DIAG, K, A( K ), N+1, INFO )
  372:                IF( INFO.GT.0 )
  373:      +            INFO = INFO + K
  374:                IF( INFO.GT.0 )
  375:      +            RETURN
  376:                CALL ZTRMM( 'R', 'U', 'N', DIAG, K, K, CONE, A( K ), N+1,
  377:      +                     A( 0 ), N+1 )
  378:             END IF
  379:          ELSE
  380: *
  381: *           N is even and TRANSR = 'C'
  382: *
  383:             IF( LOWER ) THEN
  384: *
  385: *              SRPA for LOWER, TRANSPOSE and N is even (see paper)
  386: *              T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1)
  387: *              T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
  388: *
  389:                CALL ZTRTRI( 'U', DIAG, K, A( K ), K, INFO )
  390:                IF( INFO.GT.0 )
  391:      +            RETURN
  392:                CALL ZTRMM( 'L', 'U', 'N', DIAG, K, K, -CONE, A( K ), K,
  393:      +                     A( K*( K+1 ) ), K )
  394:                CALL ZTRTRI( 'L', DIAG, K, A( 0 ), K, INFO )
  395:                IF( INFO.GT.0 )
  396:      +            INFO = INFO + K
  397:                IF( INFO.GT.0 )
  398:      +            RETURN
  399:                CALL ZTRMM( 'R', 'L', 'C', DIAG, K, K, CONE, A( 0 ), K,
  400:      +                     A( K*( K+1 ) ), K )
  401:             ELSE
  402: *
  403: *              SRPA for UPPER, TRANSPOSE and N is even (see paper)
  404: *              T1 -> B(0,k+1),     T2 -> B(0,k),   S -> B(0,0)
  405: *              T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
  406: *
  407:                CALL ZTRTRI( 'U', DIAG, K, A( K*( K+1 ) ), K, INFO )
  408:                IF( INFO.GT.0 )
  409:      +            RETURN
  410:                CALL ZTRMM( 'R', 'U', 'C', DIAG, K, K, -CONE,
  411:      +                     A( K*( K+1 ) ), K, A( 0 ), K )
  412:                CALL ZTRTRI( 'L', DIAG, K, A( K*K ), K, INFO )
  413:                IF( INFO.GT.0 )
  414:      +            INFO = INFO + K
  415:                IF( INFO.GT.0 )
  416:      +            RETURN
  417:                CALL ZTRMM( 'L', 'L', 'N', DIAG, K, K, CONE, A( K*K ), K,
  418:      +                     A( 0 ), K )
  419:             END IF
  420:          END IF
  421:       END IF
  422: *
  423:       RETURN
  424: *
  425: *     End of ZTFTRI
  426: *
  427:       END

CVSweb interface <joel.bertrand@systella.fr>