File:  [local] / rpl / lapack / lapack / ztftri.f
Revision 1.14: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 11:07:03 2017 UTC (6 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_27, rpl-4_1_26, HEAD
Cohérence.

    1: *> \brief \b ZTFTRI
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZTFTRI + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztftri.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztftri.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztftri.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZTFTRI( TRANSR, UPLO, DIAG, N, A, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          TRANSR, UPLO, DIAG
   25: *       INTEGER            INFO, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       COMPLEX*16         A( 0: * )
   29: *       ..
   30: *
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> ZTFTRI computes the inverse of a triangular matrix A stored in RFP
   38: *> format.
   39: *>
   40: *> This is a Level 3 BLAS version of the algorithm.
   41: *> \endverbatim
   42: *
   43: *  Arguments:
   44: *  ==========
   45: *
   46: *> \param[in] TRANSR
   47: *> \verbatim
   48: *>          TRANSR is CHARACTER*1
   49: *>          = 'N':  The Normal TRANSR of RFP A is stored;
   50: *>          = 'C':  The Conjugate-transpose TRANSR of RFP A is stored.
   51: *> \endverbatim
   52: *>
   53: *> \param[in] UPLO
   54: *> \verbatim
   55: *>          UPLO is CHARACTER*1
   56: *>          = 'U':  A is upper triangular;
   57: *>          = 'L':  A is lower triangular.
   58: *> \endverbatim
   59: *>
   60: *> \param[in] DIAG
   61: *> \verbatim
   62: *>          DIAG is CHARACTER*1
   63: *>          = 'N':  A is non-unit triangular;
   64: *>          = 'U':  A is unit triangular.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] N
   68: *> \verbatim
   69: *>          N is INTEGER
   70: *>          The order of the matrix A.  N >= 0.
   71: *> \endverbatim
   72: *>
   73: *> \param[in,out] A
   74: *> \verbatim
   75: *>          A is COMPLEX*16 array, dimension ( N*(N+1)/2 );
   76: *>          On entry, the triangular matrix A in RFP format. RFP format
   77: *>          is described by TRANSR, UPLO, and N as follows: If TRANSR =
   78: *>          'N' then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
   79: *>          (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'C' then RFP is
   80: *>          the Conjugate-transpose of RFP A as defined when
   81: *>          TRANSR = 'N'. The contents of RFP A are defined by UPLO as
   82: *>          follows: If UPLO = 'U' the RFP A contains the nt elements of
   83: *>          upper packed A; If UPLO = 'L' the RFP A contains the nt
   84: *>          elements of lower packed A. The LDA of RFP A is (N+1)/2 when
   85: *>          TRANSR = 'C'. When TRANSR is 'N' the LDA is N+1 when N is
   86: *>          even and N is odd. See the Note below for more details.
   87: *>
   88: *>          On exit, the (triangular) inverse of the original matrix, in
   89: *>          the same storage format.
   90: *> \endverbatim
   91: *>
   92: *> \param[out] INFO
   93: *> \verbatim
   94: *>          INFO is INTEGER
   95: *>          = 0: successful exit
   96: *>          < 0: if INFO = -i, the i-th argument had an illegal value
   97: *>          > 0: if INFO = i, A(i,i) is exactly zero.  The triangular
   98: *>               matrix is singular and its inverse can not be computed.
   99: *> \endverbatim
  100: *
  101: *  Authors:
  102: *  ========
  103: *
  104: *> \author Univ. of Tennessee
  105: *> \author Univ. of California Berkeley
  106: *> \author Univ. of Colorado Denver
  107: *> \author NAG Ltd.
  108: *
  109: *> \date December 2016
  110: *
  111: *> \ingroup complex16OTHERcomputational
  112: *
  113: *> \par Further Details:
  114: *  =====================
  115: *>
  116: *> \verbatim
  117: *>
  118: *>  We first consider Standard Packed Format when N is even.
  119: *>  We give an example where N = 6.
  120: *>
  121: *>      AP is Upper             AP is Lower
  122: *>
  123: *>   00 01 02 03 04 05       00
  124: *>      11 12 13 14 15       10 11
  125: *>         22 23 24 25       20 21 22
  126: *>            33 34 35       30 31 32 33
  127: *>               44 45       40 41 42 43 44
  128: *>                  55       50 51 52 53 54 55
  129: *>
  130: *>
  131: *>  Let TRANSR = 'N'. RFP holds AP as follows:
  132: *>  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
  133: *>  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
  134: *>  conjugate-transpose of the first three columns of AP upper.
  135: *>  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
  136: *>  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
  137: *>  conjugate-transpose of the last three columns of AP lower.
  138: *>  To denote conjugate we place -- above the element. This covers the
  139: *>  case N even and TRANSR = 'N'.
  140: *>
  141: *>         RFP A                   RFP A
  142: *>
  143: *>                                -- -- --
  144: *>        03 04 05                33 43 53
  145: *>                                   -- --
  146: *>        13 14 15                00 44 54
  147: *>                                      --
  148: *>        23 24 25                10 11 55
  149: *>
  150: *>        33 34 35                20 21 22
  151: *>        --
  152: *>        00 44 45                30 31 32
  153: *>        -- --
  154: *>        01 11 55                40 41 42
  155: *>        -- -- --
  156: *>        02 12 22                50 51 52
  157: *>
  158: *>  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
  159: *>  transpose of RFP A above. One therefore gets:
  160: *>
  161: *>
  162: *>           RFP A                   RFP A
  163: *>
  164: *>     -- -- -- --                -- -- -- -- -- --
  165: *>     03 13 23 33 00 01 02    33 00 10 20 30 40 50
  166: *>     -- -- -- -- --                -- -- -- -- --
  167: *>     04 14 24 34 44 11 12    43 44 11 21 31 41 51
  168: *>     -- -- -- -- -- --                -- -- -- --
  169: *>     05 15 25 35 45 55 22    53 54 55 22 32 42 52
  170: *>
  171: *>
  172: *>  We next  consider Standard Packed Format when N is odd.
  173: *>  We give an example where N = 5.
  174: *>
  175: *>     AP is Upper                 AP is Lower
  176: *>
  177: *>   00 01 02 03 04              00
  178: *>      11 12 13 14              10 11
  179: *>         22 23 24              20 21 22
  180: *>            33 34              30 31 32 33
  181: *>               44              40 41 42 43 44
  182: *>
  183: *>
  184: *>  Let TRANSR = 'N'. RFP holds AP as follows:
  185: *>  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  186: *>  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  187: *>  conjugate-transpose of the first two   columns of AP upper.
  188: *>  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  189: *>  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  190: *>  conjugate-transpose of the last two   columns of AP lower.
  191: *>  To denote conjugate we place -- above the element. This covers the
  192: *>  case N odd  and TRANSR = 'N'.
  193: *>
  194: *>         RFP A                   RFP A
  195: *>
  196: *>                                   -- --
  197: *>        02 03 04                00 33 43
  198: *>                                      --
  199: *>        12 13 14                10 11 44
  200: *>
  201: *>        22 23 24                20 21 22
  202: *>        --
  203: *>        00 33 34                30 31 32
  204: *>        -- --
  205: *>        01 11 44                40 41 42
  206: *>
  207: *>  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
  208: *>  transpose of RFP A above. One therefore gets:
  209: *>
  210: *>
  211: *>           RFP A                   RFP A
  212: *>
  213: *>     -- -- --                   -- -- -- -- -- --
  214: *>     02 12 22 00 01             00 10 20 30 40 50
  215: *>     -- -- -- --                   -- -- -- -- --
  216: *>     03 13 23 33 11             33 11 21 31 41 51
  217: *>     -- -- -- -- --                   -- -- -- --
  218: *>     04 14 24 34 44             43 44 22 32 42 52
  219: *> \endverbatim
  220: *>
  221: *  =====================================================================
  222:       SUBROUTINE ZTFTRI( TRANSR, UPLO, DIAG, N, A, INFO )
  223: *
  224: *  -- LAPACK computational routine (version 3.7.0) --
  225: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  226: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  227: *     December 2016
  228: *
  229: *     .. Scalar Arguments ..
  230:       CHARACTER          TRANSR, UPLO, DIAG
  231:       INTEGER            INFO, N
  232: *     ..
  233: *     .. Array Arguments ..
  234:       COMPLEX*16         A( 0: * )
  235: *     ..
  236: *
  237: *  =====================================================================
  238: *
  239: *     .. Parameters ..
  240:       COMPLEX*16         CONE
  241:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  242: *     ..
  243: *     .. Local Scalars ..
  244:       LOGICAL            LOWER, NISODD, NORMALTRANSR
  245:       INTEGER            N1, N2, K
  246: *     ..
  247: *     .. External Functions ..
  248:       LOGICAL            LSAME
  249:       EXTERNAL           LSAME
  250: *     ..
  251: *     .. External Subroutines ..
  252:       EXTERNAL           XERBLA, ZTRMM, ZTRTRI
  253: *     ..
  254: *     .. Intrinsic Functions ..
  255:       INTRINSIC          MOD
  256: *     ..
  257: *     .. Executable Statements ..
  258: *
  259: *     Test the input parameters.
  260: *
  261:       INFO = 0
  262:       NORMALTRANSR = LSAME( TRANSR, 'N' )
  263:       LOWER = LSAME( UPLO, 'L' )
  264:       IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN
  265:          INFO = -1
  266:       ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  267:          INFO = -2
  268:       ELSE IF( .NOT.LSAME( DIAG, 'N' ) .AND. .NOT.LSAME( DIAG, 'U' ) )
  269:      $         THEN
  270:          INFO = -3
  271:       ELSE IF( N.LT.0 ) THEN
  272:          INFO = -4
  273:       END IF
  274:       IF( INFO.NE.0 ) THEN
  275:          CALL XERBLA( 'ZTFTRI', -INFO )
  276:          RETURN
  277:       END IF
  278: *
  279: *     Quick return if possible
  280: *
  281:       IF( N.EQ.0 )
  282:      $   RETURN
  283: *
  284: *     If N is odd, set NISODD = .TRUE.
  285: *     If N is even, set K = N/2 and NISODD = .FALSE.
  286: *
  287:       IF( MOD( N, 2 ).EQ.0 ) THEN
  288:          K = N / 2
  289:          NISODD = .FALSE.
  290:       ELSE
  291:          NISODD = .TRUE.
  292:       END IF
  293: *
  294: *     Set N1 and N2 depending on LOWER
  295: *
  296:       IF( LOWER ) THEN
  297:          N2 = N / 2
  298:          N1 = N - N2
  299:       ELSE
  300:          N1 = N / 2
  301:          N2 = N - N1
  302:       END IF
  303: *
  304: *
  305: *     start execution: there are eight cases
  306: *
  307:       IF( NISODD ) THEN
  308: *
  309: *        N is odd
  310: *
  311:          IF( NORMALTRANSR ) THEN
  312: *
  313: *           N is odd and TRANSR = 'N'
  314: *
  315:             IF( LOWER ) THEN
  316: *
  317: *             SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
  318: *             T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
  319: *             T1 -> a(0), T2 -> a(n), S -> a(n1)
  320: *
  321:                CALL ZTRTRI( 'L', DIAG, N1, A( 0 ), N, INFO )
  322:                IF( INFO.GT.0 )
  323:      $            RETURN
  324:                CALL ZTRMM( 'R', 'L', 'N', DIAG, N2, N1, -CONE, A( 0 ),
  325:      $                     N, A( N1 ), N )
  326:                CALL ZTRTRI( 'U', DIAG, N2, A( N ), N, INFO )
  327:                IF( INFO.GT.0 )
  328:      $            INFO = INFO + N1
  329:                IF( INFO.GT.0 )
  330:      $            RETURN
  331:                CALL ZTRMM( 'L', 'U', 'C', DIAG, N2, N1, CONE, A( N ), N,
  332:      $                     A( N1 ), N )
  333: *
  334:             ELSE
  335: *
  336: *             SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
  337: *             T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
  338: *             T1 -> a(n2), T2 -> a(n1), S -> a(0)
  339: *
  340:                CALL ZTRTRI( 'L', DIAG, N1, A( N2 ), N, INFO )
  341:                IF( INFO.GT.0 )
  342:      $            RETURN
  343:                CALL ZTRMM( 'L', 'L', 'C', DIAG, N1, N2, -CONE, A( N2 ),
  344:      $                     N, A( 0 ), N )
  345:                CALL ZTRTRI( 'U', DIAG, N2, A( N1 ), N, INFO )
  346:                IF( INFO.GT.0 )
  347:      $            INFO = INFO + N1
  348:                IF( INFO.GT.0 )
  349:      $            RETURN
  350:                CALL ZTRMM( 'R', 'U', 'N', DIAG, N1, N2, CONE, A( N1 ),
  351:      $                     N, A( 0 ), N )
  352: *
  353:             END IF
  354: *
  355:          ELSE
  356: *
  357: *           N is odd and TRANSR = 'C'
  358: *
  359:             IF( LOWER ) THEN
  360: *
  361: *              SRPA for LOWER, TRANSPOSE and N is odd
  362: *              T1 -> a(0), T2 -> a(1), S -> a(0+n1*n1)
  363: *
  364:                CALL ZTRTRI( 'U', DIAG, N1, A( 0 ), N1, INFO )
  365:                IF( INFO.GT.0 )
  366:      $            RETURN
  367:                CALL ZTRMM( 'L', 'U', 'N', DIAG, N1, N2, -CONE, A( 0 ),
  368:      $                     N1, A( N1*N1 ), N1 )
  369:                CALL ZTRTRI( 'L', DIAG, N2, A( 1 ), N1, INFO )
  370:                IF( INFO.GT.0 )
  371:      $            INFO = INFO + N1
  372:                IF( INFO.GT.0 )
  373:      $            RETURN
  374:                CALL ZTRMM( 'R', 'L', 'C', DIAG, N1, N2, CONE, A( 1 ),
  375:      $                     N1, A( N1*N1 ), N1 )
  376: *
  377:             ELSE
  378: *
  379: *              SRPA for UPPER, TRANSPOSE and N is odd
  380: *              T1 -> a(0+n2*n2), T2 -> a(0+n1*n2), S -> a(0)
  381: *
  382:                CALL ZTRTRI( 'U', DIAG, N1, A( N2*N2 ), N2, INFO )
  383:                IF( INFO.GT.0 )
  384:      $            RETURN
  385:                CALL ZTRMM( 'R', 'U', 'C', DIAG, N2, N1, -CONE,
  386:      $                     A( N2*N2 ), N2, A( 0 ), N2 )
  387:                CALL ZTRTRI( 'L', DIAG, N2, A( N1*N2 ), N2, INFO )
  388:                IF( INFO.GT.0 )
  389:      $            INFO = INFO + N1
  390:                IF( INFO.GT.0 )
  391:      $            RETURN
  392:                CALL ZTRMM( 'L', 'L', 'N', DIAG, N2, N1, CONE,
  393:      $                     A( N1*N2 ), N2, A( 0 ), N2 )
  394:             END IF
  395: *
  396:          END IF
  397: *
  398:       ELSE
  399: *
  400: *        N is even
  401: *
  402:          IF( NORMALTRANSR ) THEN
  403: *
  404: *           N is even and TRANSR = 'N'
  405: *
  406:             IF( LOWER ) THEN
  407: *
  408: *              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
  409: *              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
  410: *              T1 -> a(1), T2 -> a(0), S -> a(k+1)
  411: *
  412:                CALL ZTRTRI( 'L', DIAG, K, A( 1 ), N+1, INFO )
  413:                IF( INFO.GT.0 )
  414:      $            RETURN
  415:                CALL ZTRMM( 'R', 'L', 'N', DIAG, K, K, -CONE, A( 1 ),
  416:      $                     N+1, A( K+1 ), N+1 )
  417:                CALL ZTRTRI( 'U', DIAG, K, A( 0 ), N+1, INFO )
  418:                IF( INFO.GT.0 )
  419:      $            INFO = INFO + K
  420:                IF( INFO.GT.0 )
  421:      $            RETURN
  422:                CALL ZTRMM( 'L', 'U', 'C', DIAG, K, K, CONE, A( 0 ), N+1,
  423:      $                     A( K+1 ), N+1 )
  424: *
  425:             ELSE
  426: *
  427: *              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
  428: *              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0)
  429: *              T1 -> a(k+1), T2 -> a(k), S -> a(0)
  430: *
  431:                CALL ZTRTRI( 'L', DIAG, K, A( K+1 ), N+1, INFO )
  432:                IF( INFO.GT.0 )
  433:      $            RETURN
  434:                CALL ZTRMM( 'L', 'L', 'C', DIAG, K, K, -CONE, A( K+1 ),
  435:      $                     N+1, A( 0 ), N+1 )
  436:                CALL ZTRTRI( 'U', DIAG, K, A( K ), N+1, INFO )
  437:                IF( INFO.GT.0 )
  438:      $            INFO = INFO + K
  439:                IF( INFO.GT.0 )
  440:      $            RETURN
  441:                CALL ZTRMM( 'R', 'U', 'N', DIAG, K, K, CONE, A( K ), N+1,
  442:      $                     A( 0 ), N+1 )
  443:             END IF
  444:          ELSE
  445: *
  446: *           N is even and TRANSR = 'C'
  447: *
  448:             IF( LOWER ) THEN
  449: *
  450: *              SRPA for LOWER, TRANSPOSE and N is even (see paper)
  451: *              T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1)
  452: *              T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
  453: *
  454:                CALL ZTRTRI( 'U', DIAG, K, A( K ), K, INFO )
  455:                IF( INFO.GT.0 )
  456:      $            RETURN
  457:                CALL ZTRMM( 'L', 'U', 'N', DIAG, K, K, -CONE, A( K ), K,
  458:      $                     A( K*( K+1 ) ), K )
  459:                CALL ZTRTRI( 'L', DIAG, K, A( 0 ), K, INFO )
  460:                IF( INFO.GT.0 )
  461:      $            INFO = INFO + K
  462:                IF( INFO.GT.0 )
  463:      $            RETURN
  464:                CALL ZTRMM( 'R', 'L', 'C', DIAG, K, K, CONE, A( 0 ), K,
  465:      $                     A( K*( K+1 ) ), K )
  466:             ELSE
  467: *
  468: *              SRPA for UPPER, TRANSPOSE and N is even (see paper)
  469: *              T1 -> B(0,k+1),     T2 -> B(0,k),   S -> B(0,0)
  470: *              T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
  471: *
  472:                CALL ZTRTRI( 'U', DIAG, K, A( K*( K+1 ) ), K, INFO )
  473:                IF( INFO.GT.0 )
  474:      $            RETURN
  475:                CALL ZTRMM( 'R', 'U', 'C', DIAG, K, K, -CONE,
  476:      $                     A( K*( K+1 ) ), K, A( 0 ), K )
  477:                CALL ZTRTRI( 'L', DIAG, K, A( K*K ), K, INFO )
  478:                IF( INFO.GT.0 )
  479:      $            INFO = INFO + K
  480:                IF( INFO.GT.0 )
  481:      $            RETURN
  482:                CALL ZTRMM( 'L', 'L', 'N', DIAG, K, K, CONE, A( K*K ), K,
  483:      $                     A( 0 ), K )
  484:             END IF
  485:          END IF
  486:       END IF
  487: *
  488:       RETURN
  489: *
  490: *     End of ZTFTRI
  491: *
  492:       END

CVSweb interface <joel.bertrand@systella.fr>