File:  [local] / rpl / lapack / lapack / ztbrfs.f
Revision 1.17: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:40 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZTBRFS
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZTBRFS + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztbrfs.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztbrfs.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztbrfs.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZTBRFS( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B,
   22: *                          LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          DIAG, TRANS, UPLO
   26: *       INTEGER            INFO, KD, LDAB, LDB, LDX, N, NRHS
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
   30: *       COMPLEX*16         AB( LDAB, * ), B( LDB, * ), WORK( * ),
   31: *      $                   X( LDX, * )
   32: *       ..
   33: *
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> ZTBRFS provides error bounds and backward error estimates for the
   41: *> solution to a system of linear equations with a triangular band
   42: *> coefficient matrix.
   43: *>
   44: *> The solution matrix X must be computed by ZTBTRS or some other
   45: *> means before entering this routine.  ZTBRFS does not do iterative
   46: *> refinement because doing so cannot improve the backward error.
   47: *> \endverbatim
   48: *
   49: *  Arguments:
   50: *  ==========
   51: *
   52: *> \param[in] UPLO
   53: *> \verbatim
   54: *>          UPLO is CHARACTER*1
   55: *>          = 'U':  A is upper triangular;
   56: *>          = 'L':  A is lower triangular.
   57: *> \endverbatim
   58: *>
   59: *> \param[in] TRANS
   60: *> \verbatim
   61: *>          TRANS is CHARACTER*1
   62: *>          Specifies the form of the system of equations:
   63: *>          = 'N':  A * X = B     (No transpose)
   64: *>          = 'T':  A**T * X = B  (Transpose)
   65: *>          = 'C':  A**H * X = B  (Conjugate transpose)
   66: *> \endverbatim
   67: *>
   68: *> \param[in] DIAG
   69: *> \verbatim
   70: *>          DIAG is CHARACTER*1
   71: *>          = 'N':  A is non-unit triangular;
   72: *>          = 'U':  A is unit triangular.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] N
   76: *> \verbatim
   77: *>          N is INTEGER
   78: *>          The order of the matrix A.  N >= 0.
   79: *> \endverbatim
   80: *>
   81: *> \param[in] KD
   82: *> \verbatim
   83: *>          KD is INTEGER
   84: *>          The number of superdiagonals or subdiagonals of the
   85: *>          triangular band matrix A.  KD >= 0.
   86: *> \endverbatim
   87: *>
   88: *> \param[in] NRHS
   89: *> \verbatim
   90: *>          NRHS is INTEGER
   91: *>          The number of right hand sides, i.e., the number of columns
   92: *>          of the matrices B and X.  NRHS >= 0.
   93: *> \endverbatim
   94: *>
   95: *> \param[in] AB
   96: *> \verbatim
   97: *>          AB is COMPLEX*16 array, dimension (LDAB,N)
   98: *>          The upper or lower triangular band matrix A, stored in the
   99: *>          first kd+1 rows of the array. The j-th column of A is stored
  100: *>          in the j-th column of the array AB as follows:
  101: *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
  102: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
  103: *>          If DIAG = 'U', the diagonal elements of A are not referenced
  104: *>          and are assumed to be 1.
  105: *> \endverbatim
  106: *>
  107: *> \param[in] LDAB
  108: *> \verbatim
  109: *>          LDAB is INTEGER
  110: *>          The leading dimension of the array AB.  LDAB >= KD+1.
  111: *> \endverbatim
  112: *>
  113: *> \param[in] B
  114: *> \verbatim
  115: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  116: *>          The right hand side matrix B.
  117: *> \endverbatim
  118: *>
  119: *> \param[in] LDB
  120: *> \verbatim
  121: *>          LDB is INTEGER
  122: *>          The leading dimension of the array B.  LDB >= max(1,N).
  123: *> \endverbatim
  124: *>
  125: *> \param[in] X
  126: *> \verbatim
  127: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
  128: *>          The solution matrix X.
  129: *> \endverbatim
  130: *>
  131: *> \param[in] LDX
  132: *> \verbatim
  133: *>          LDX is INTEGER
  134: *>          The leading dimension of the array X.  LDX >= max(1,N).
  135: *> \endverbatim
  136: *>
  137: *> \param[out] FERR
  138: *> \verbatim
  139: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
  140: *>          The estimated forward error bound for each solution vector
  141: *>          X(j) (the j-th column of the solution matrix X).
  142: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
  143: *>          is an estimated upper bound for the magnitude of the largest
  144: *>          element in (X(j) - XTRUE) divided by the magnitude of the
  145: *>          largest element in X(j).  The estimate is as reliable as
  146: *>          the estimate for RCOND, and is almost always a slight
  147: *>          overestimate of the true error.
  148: *> \endverbatim
  149: *>
  150: *> \param[out] BERR
  151: *> \verbatim
  152: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  153: *>          The componentwise relative backward error of each solution
  154: *>          vector X(j) (i.e., the smallest relative change in
  155: *>          any element of A or B that makes X(j) an exact solution).
  156: *> \endverbatim
  157: *>
  158: *> \param[out] WORK
  159: *> \verbatim
  160: *>          WORK is COMPLEX*16 array, dimension (2*N)
  161: *> \endverbatim
  162: *>
  163: *> \param[out] RWORK
  164: *> \verbatim
  165: *>          RWORK is DOUBLE PRECISION array, dimension (N)
  166: *> \endverbatim
  167: *>
  168: *> \param[out] INFO
  169: *> \verbatim
  170: *>          INFO is INTEGER
  171: *>          = 0:  successful exit
  172: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  173: *> \endverbatim
  174: *
  175: *  Authors:
  176: *  ========
  177: *
  178: *> \author Univ. of Tennessee
  179: *> \author Univ. of California Berkeley
  180: *> \author Univ. of Colorado Denver
  181: *> \author NAG Ltd.
  182: *
  183: *> \ingroup complex16OTHERcomputational
  184: *
  185: *  =====================================================================
  186:       SUBROUTINE ZTBRFS( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B,
  187:      $                   LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )
  188: *
  189: *  -- LAPACK computational routine --
  190: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  191: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  192: *
  193: *     .. Scalar Arguments ..
  194:       CHARACTER          DIAG, TRANS, UPLO
  195:       INTEGER            INFO, KD, LDAB, LDB, LDX, N, NRHS
  196: *     ..
  197: *     .. Array Arguments ..
  198:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
  199:       COMPLEX*16         AB( LDAB, * ), B( LDB, * ), WORK( * ),
  200:      $                   X( LDX, * )
  201: *     ..
  202: *
  203: *  =====================================================================
  204: *
  205: *     .. Parameters ..
  206:       DOUBLE PRECISION   ZERO
  207:       PARAMETER          ( ZERO = 0.0D+0 )
  208:       COMPLEX*16         ONE
  209:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
  210: *     ..
  211: *     .. Local Scalars ..
  212:       LOGICAL            NOTRAN, NOUNIT, UPPER
  213:       CHARACTER          TRANSN, TRANST
  214:       INTEGER            I, J, K, KASE, NZ
  215:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  216:       COMPLEX*16         ZDUM
  217: *     ..
  218: *     .. Local Arrays ..
  219:       INTEGER            ISAVE( 3 )
  220: *     ..
  221: *     .. External Subroutines ..
  222:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZLACN2, ZTBMV, ZTBSV
  223: *     ..
  224: *     .. Intrinsic Functions ..
  225:       INTRINSIC          ABS, DBLE, DIMAG, MAX, MIN
  226: *     ..
  227: *     .. External Functions ..
  228:       LOGICAL            LSAME
  229:       DOUBLE PRECISION   DLAMCH
  230:       EXTERNAL           LSAME, DLAMCH
  231: *     ..
  232: *     .. Statement Functions ..
  233:       DOUBLE PRECISION   CABS1
  234: *     ..
  235: *     .. Statement Function definitions ..
  236:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  237: *     ..
  238: *     .. Executable Statements ..
  239: *
  240: *     Test the input parameters.
  241: *
  242:       INFO = 0
  243:       UPPER = LSAME( UPLO, 'U' )
  244:       NOTRAN = LSAME( TRANS, 'N' )
  245:       NOUNIT = LSAME( DIAG, 'N' )
  246: *
  247:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  248:          INFO = -1
  249:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  250:      $         LSAME( TRANS, 'C' ) ) THEN
  251:          INFO = -2
  252:       ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  253:          INFO = -3
  254:       ELSE IF( N.LT.0 ) THEN
  255:          INFO = -4
  256:       ELSE IF( KD.LT.0 ) THEN
  257:          INFO = -5
  258:       ELSE IF( NRHS.LT.0 ) THEN
  259:          INFO = -6
  260:       ELSE IF( LDAB.LT.KD+1 ) THEN
  261:          INFO = -8
  262:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  263:          INFO = -10
  264:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  265:          INFO = -12
  266:       END IF
  267:       IF( INFO.NE.0 ) THEN
  268:          CALL XERBLA( 'ZTBRFS', -INFO )
  269:          RETURN
  270:       END IF
  271: *
  272: *     Quick return if possible
  273: *
  274:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  275:          DO 10 J = 1, NRHS
  276:             FERR( J ) = ZERO
  277:             BERR( J ) = ZERO
  278:    10    CONTINUE
  279:          RETURN
  280:       END IF
  281: *
  282:       IF( NOTRAN ) THEN
  283:          TRANSN = 'N'
  284:          TRANST = 'C'
  285:       ELSE
  286:          TRANSN = 'C'
  287:          TRANST = 'N'
  288:       END IF
  289: *
  290: *     NZ = maximum number of nonzero elements in each row of A, plus 1
  291: *
  292:       NZ = KD + 2
  293:       EPS = DLAMCH( 'Epsilon' )
  294:       SAFMIN = DLAMCH( 'Safe minimum' )
  295:       SAFE1 = NZ*SAFMIN
  296:       SAFE2 = SAFE1 / EPS
  297: *
  298: *     Do for each right hand side
  299: *
  300:       DO 250 J = 1, NRHS
  301: *
  302: *        Compute residual R = B - op(A) * X,
  303: *        where op(A) = A, A**T, or A**H, depending on TRANS.
  304: *
  305:          CALL ZCOPY( N, X( 1, J ), 1, WORK, 1 )
  306:          CALL ZTBMV( UPLO, TRANS, DIAG, N, KD, AB, LDAB, WORK, 1 )
  307:          CALL ZAXPY( N, -ONE, B( 1, J ), 1, WORK, 1 )
  308: *
  309: *        Compute componentwise relative backward error from formula
  310: *
  311: *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
  312: *
  313: *        where abs(Z) is the componentwise absolute value of the matrix
  314: *        or vector Z.  If the i-th component of the denominator is less
  315: *        than SAFE2, then SAFE1 is added to the i-th components of the
  316: *        numerator and denominator before dividing.
  317: *
  318:          DO 20 I = 1, N
  319:             RWORK( I ) = CABS1( B( I, J ) )
  320:    20    CONTINUE
  321: *
  322:          IF( NOTRAN ) THEN
  323: *
  324: *           Compute abs(A)*abs(X) + abs(B).
  325: *
  326:             IF( UPPER ) THEN
  327:                IF( NOUNIT ) THEN
  328:                   DO 40 K = 1, N
  329:                      XK = CABS1( X( K, J ) )
  330:                      DO 30 I = MAX( 1, K-KD ), K
  331:                         RWORK( I ) = RWORK( I ) +
  332:      $                               CABS1( AB( KD+1+I-K, K ) )*XK
  333:    30                CONTINUE
  334:    40             CONTINUE
  335:                ELSE
  336:                   DO 60 K = 1, N
  337:                      XK = CABS1( X( K, J ) )
  338:                      DO 50 I = MAX( 1, K-KD ), K - 1
  339:                         RWORK( I ) = RWORK( I ) +
  340:      $                               CABS1( AB( KD+1+I-K, K ) )*XK
  341:    50                CONTINUE
  342:                      RWORK( K ) = RWORK( K ) + XK
  343:    60             CONTINUE
  344:                END IF
  345:             ELSE
  346:                IF( NOUNIT ) THEN
  347:                   DO 80 K = 1, N
  348:                      XK = CABS1( X( K, J ) )
  349:                      DO 70 I = K, MIN( N, K+KD )
  350:                         RWORK( I ) = RWORK( I ) +
  351:      $                               CABS1( AB( 1+I-K, K ) )*XK
  352:    70                CONTINUE
  353:    80             CONTINUE
  354:                ELSE
  355:                   DO 100 K = 1, N
  356:                      XK = CABS1( X( K, J ) )
  357:                      DO 90 I = K + 1, MIN( N, K+KD )
  358:                         RWORK( I ) = RWORK( I ) +
  359:      $                               CABS1( AB( 1+I-K, K ) )*XK
  360:    90                CONTINUE
  361:                      RWORK( K ) = RWORK( K ) + XK
  362:   100             CONTINUE
  363:                END IF
  364:             END IF
  365:          ELSE
  366: *
  367: *           Compute abs(A**H)*abs(X) + abs(B).
  368: *
  369:             IF( UPPER ) THEN
  370:                IF( NOUNIT ) THEN
  371:                   DO 120 K = 1, N
  372:                      S = ZERO
  373:                      DO 110 I = MAX( 1, K-KD ), K
  374:                         S = S + CABS1( AB( KD+1+I-K, K ) )*
  375:      $                      CABS1( X( I, J ) )
  376:   110                CONTINUE
  377:                      RWORK( K ) = RWORK( K ) + S
  378:   120             CONTINUE
  379:                ELSE
  380:                   DO 140 K = 1, N
  381:                      S = CABS1( X( K, J ) )
  382:                      DO 130 I = MAX( 1, K-KD ), K - 1
  383:                         S = S + CABS1( AB( KD+1+I-K, K ) )*
  384:      $                      CABS1( X( I, J ) )
  385:   130                CONTINUE
  386:                      RWORK( K ) = RWORK( K ) + S
  387:   140             CONTINUE
  388:                END IF
  389:             ELSE
  390:                IF( NOUNIT ) THEN
  391:                   DO 160 K = 1, N
  392:                      S = ZERO
  393:                      DO 150 I = K, MIN( N, K+KD )
  394:                         S = S + CABS1( AB( 1+I-K, K ) )*
  395:      $                      CABS1( X( I, J ) )
  396:   150                CONTINUE
  397:                      RWORK( K ) = RWORK( K ) + S
  398:   160             CONTINUE
  399:                ELSE
  400:                   DO 180 K = 1, N
  401:                      S = CABS1( X( K, J ) )
  402:                      DO 170 I = K + 1, MIN( N, K+KD )
  403:                         S = S + CABS1( AB( 1+I-K, K ) )*
  404:      $                      CABS1( X( I, J ) )
  405:   170                CONTINUE
  406:                      RWORK( K ) = RWORK( K ) + S
  407:   180             CONTINUE
  408:                END IF
  409:             END IF
  410:          END IF
  411:          S = ZERO
  412:          DO 190 I = 1, N
  413:             IF( RWORK( I ).GT.SAFE2 ) THEN
  414:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
  415:             ELSE
  416:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
  417:      $             ( RWORK( I )+SAFE1 ) )
  418:             END IF
  419:   190    CONTINUE
  420:          BERR( J ) = S
  421: *
  422: *        Bound error from formula
  423: *
  424: *        norm(X - XTRUE) / norm(X) .le. FERR =
  425: *        norm( abs(inv(op(A)))*
  426: *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
  427: *
  428: *        where
  429: *          norm(Z) is the magnitude of the largest component of Z
  430: *          inv(op(A)) is the inverse of op(A)
  431: *          abs(Z) is the componentwise absolute value of the matrix or
  432: *             vector Z
  433: *          NZ is the maximum number of nonzeros in any row of A, plus 1
  434: *          EPS is machine epsilon
  435: *
  436: *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
  437: *        is incremented by SAFE1 if the i-th component of
  438: *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
  439: *
  440: *        Use ZLACN2 to estimate the infinity-norm of the matrix
  441: *           inv(op(A)) * diag(W),
  442: *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
  443: *
  444:          DO 200 I = 1, N
  445:             IF( RWORK( I ).GT.SAFE2 ) THEN
  446:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
  447:             ELSE
  448:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
  449:      $                      SAFE1
  450:             END IF
  451:   200    CONTINUE
  452: *
  453:          KASE = 0
  454:   210    CONTINUE
  455:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
  456:          IF( KASE.NE.0 ) THEN
  457:             IF( KASE.EQ.1 ) THEN
  458: *
  459: *              Multiply by diag(W)*inv(op(A)**H).
  460: *
  461:                CALL ZTBSV( UPLO, TRANST, DIAG, N, KD, AB, LDAB, WORK,
  462:      $                     1 )
  463:                DO 220 I = 1, N
  464:                   WORK( I ) = RWORK( I )*WORK( I )
  465:   220          CONTINUE
  466:             ELSE
  467: *
  468: *              Multiply by inv(op(A))*diag(W).
  469: *
  470:                DO 230 I = 1, N
  471:                   WORK( I ) = RWORK( I )*WORK( I )
  472:   230          CONTINUE
  473:                CALL ZTBSV( UPLO, TRANSN, DIAG, N, KD, AB, LDAB, WORK,
  474:      $                     1 )
  475:             END IF
  476:             GO TO 210
  477:          END IF
  478: *
  479: *        Normalize error.
  480: *
  481:          LSTRES = ZERO
  482:          DO 240 I = 1, N
  483:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
  484:   240    CONTINUE
  485:          IF( LSTRES.NE.ZERO )
  486:      $      FERR( J ) = FERR( J ) / LSTRES
  487: *
  488:   250 CONTINUE
  489: *
  490:       RETURN
  491: *
  492: *     End of ZTBRFS
  493: *
  494:       END

CVSweb interface <joel.bertrand@systella.fr>