File:  [local] / rpl / lapack / lapack / ztbrfs.f
Revision 1.8: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 20:43:22 2011 UTC (12 years, 6 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack.

    1: *> \brief \b ZTBRFS
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZTBRFS + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztbrfs.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztbrfs.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztbrfs.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZTBRFS( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B,
   22: *                          LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )
   23:    24: *       .. Scalar Arguments ..
   25: *       CHARACTER          DIAG, TRANS, UPLO
   26: *       INTEGER            INFO, KD, LDAB, LDB, LDX, N, NRHS
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
   30: *       COMPLEX*16         AB( LDAB, * ), B( LDB, * ), WORK( * ),
   31: *      $                   X( LDX, * )
   32: *       ..
   33: *  
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> ZTBRFS provides error bounds and backward error estimates for the
   41: *> solution to a system of linear equations with a triangular band
   42: *> coefficient matrix.
   43: *>
   44: *> The solution matrix X must be computed by ZTBTRS or some other
   45: *> means before entering this routine.  ZTBRFS does not do iterative
   46: *> refinement because doing so cannot improve the backward error.
   47: *> \endverbatim
   48: *
   49: *  Arguments:
   50: *  ==========
   51: *
   52: *> \param[in] UPLO
   53: *> \verbatim
   54: *>          UPLO is CHARACTER*1
   55: *>          = 'U':  A is upper triangular;
   56: *>          = 'L':  A is lower triangular.
   57: *> \endverbatim
   58: *>
   59: *> \param[in] TRANS
   60: *> \verbatim
   61: *>          TRANS is CHARACTER*1
   62: *>          Specifies the form of the system of equations:
   63: *>          = 'N':  A * X = B     (No transpose)
   64: *>          = 'T':  A**T * X = B  (Transpose)
   65: *>          = 'C':  A**H * X = B  (Conjugate transpose)
   66: *> \endverbatim
   67: *>
   68: *> \param[in] DIAG
   69: *> \verbatim
   70: *>          DIAG is CHARACTER*1
   71: *>          = 'N':  A is non-unit triangular;
   72: *>          = 'U':  A is unit triangular.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] N
   76: *> \verbatim
   77: *>          N is INTEGER
   78: *>          The order of the matrix A.  N >= 0.
   79: *> \endverbatim
   80: *>
   81: *> \param[in] KD
   82: *> \verbatim
   83: *>          KD is INTEGER
   84: *>          The number of superdiagonals or subdiagonals of the
   85: *>          triangular band matrix A.  KD >= 0.
   86: *> \endverbatim
   87: *>
   88: *> \param[in] NRHS
   89: *> \verbatim
   90: *>          NRHS is INTEGER
   91: *>          The number of right hand sides, i.e., the number of columns
   92: *>          of the matrices B and X.  NRHS >= 0.
   93: *> \endverbatim
   94: *>
   95: *> \param[in] AB
   96: *> \verbatim
   97: *>          AB is COMPLEX*16 array, dimension (LDAB,N)
   98: *>          The upper or lower triangular band matrix A, stored in the
   99: *>          first kd+1 rows of the array. The j-th column of A is stored
  100: *>          in the j-th column of the array AB as follows:
  101: *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
  102: *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
  103: *>          If DIAG = 'U', the diagonal elements of A are not referenced
  104: *>          and are assumed to be 1.
  105: *> \endverbatim
  106: *>
  107: *> \param[in] LDAB
  108: *> \verbatim
  109: *>          LDAB is INTEGER
  110: *>          The leading dimension of the array AB.  LDAB >= KD+1.
  111: *> \endverbatim
  112: *>
  113: *> \param[in] B
  114: *> \verbatim
  115: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  116: *>          The right hand side matrix B.
  117: *> \endverbatim
  118: *>
  119: *> \param[in] LDB
  120: *> \verbatim
  121: *>          LDB is INTEGER
  122: *>          The leading dimension of the array B.  LDB >= max(1,N).
  123: *> \endverbatim
  124: *>
  125: *> \param[in] X
  126: *> \verbatim
  127: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
  128: *>          The solution matrix X.
  129: *> \endverbatim
  130: *>
  131: *> \param[in] LDX
  132: *> \verbatim
  133: *>          LDX is INTEGER
  134: *>          The leading dimension of the array X.  LDX >= max(1,N).
  135: *> \endverbatim
  136: *>
  137: *> \param[out] FERR
  138: *> \verbatim
  139: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
  140: *>          The estimated forward error bound for each solution vector
  141: *>          X(j) (the j-th column of the solution matrix X).
  142: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
  143: *>          is an estimated upper bound for the magnitude of the largest
  144: *>          element in (X(j) - XTRUE) divided by the magnitude of the
  145: *>          largest element in X(j).  The estimate is as reliable as
  146: *>          the estimate for RCOND, and is almost always a slight
  147: *>          overestimate of the true error.
  148: *> \endverbatim
  149: *>
  150: *> \param[out] BERR
  151: *> \verbatim
  152: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  153: *>          The componentwise relative backward error of each solution
  154: *>          vector X(j) (i.e., the smallest relative change in
  155: *>          any element of A or B that makes X(j) an exact solution).
  156: *> \endverbatim
  157: *>
  158: *> \param[out] WORK
  159: *> \verbatim
  160: *>          WORK is COMPLEX*16 array, dimension (2*N)
  161: *> \endverbatim
  162: *>
  163: *> \param[out] RWORK
  164: *> \verbatim
  165: *>          RWORK is DOUBLE PRECISION array, dimension (N)
  166: *> \endverbatim
  167: *>
  168: *> \param[out] INFO
  169: *> \verbatim
  170: *>          INFO is INTEGER
  171: *>          = 0:  successful exit
  172: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  173: *> \endverbatim
  174: *
  175: *  Authors:
  176: *  ========
  177: *
  178: *> \author Univ. of Tennessee 
  179: *> \author Univ. of California Berkeley 
  180: *> \author Univ. of Colorado Denver 
  181: *> \author NAG Ltd. 
  182: *
  183: *> \date November 2011
  184: *
  185: *> \ingroup complex16OTHERcomputational
  186: *
  187: *  =====================================================================
  188:       SUBROUTINE ZTBRFS( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B,
  189:      $                   LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )
  190: *
  191: *  -- LAPACK computational routine (version 3.4.0) --
  192: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  193: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  194: *     November 2011
  195: *
  196: *     .. Scalar Arguments ..
  197:       CHARACTER          DIAG, TRANS, UPLO
  198:       INTEGER            INFO, KD, LDAB, LDB, LDX, N, NRHS
  199: *     ..
  200: *     .. Array Arguments ..
  201:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
  202:       COMPLEX*16         AB( LDAB, * ), B( LDB, * ), WORK( * ),
  203:      $                   X( LDX, * )
  204: *     ..
  205: *
  206: *  =====================================================================
  207: *
  208: *     .. Parameters ..
  209:       DOUBLE PRECISION   ZERO
  210:       PARAMETER          ( ZERO = 0.0D+0 )
  211:       COMPLEX*16         ONE
  212:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
  213: *     ..
  214: *     .. Local Scalars ..
  215:       LOGICAL            NOTRAN, NOUNIT, UPPER
  216:       CHARACTER          TRANSN, TRANST
  217:       INTEGER            I, J, K, KASE, NZ
  218:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  219:       COMPLEX*16         ZDUM
  220: *     ..
  221: *     .. Local Arrays ..
  222:       INTEGER            ISAVE( 3 )
  223: *     ..
  224: *     .. External Subroutines ..
  225:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZLACN2, ZTBMV, ZTBSV
  226: *     ..
  227: *     .. Intrinsic Functions ..
  228:       INTRINSIC          ABS, DBLE, DIMAG, MAX, MIN
  229: *     ..
  230: *     .. External Functions ..
  231:       LOGICAL            LSAME
  232:       DOUBLE PRECISION   DLAMCH
  233:       EXTERNAL           LSAME, DLAMCH
  234: *     ..
  235: *     .. Statement Functions ..
  236:       DOUBLE PRECISION   CABS1
  237: *     ..
  238: *     .. Statement Function definitions ..
  239:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  240: *     ..
  241: *     .. Executable Statements ..
  242: *
  243: *     Test the input parameters.
  244: *
  245:       INFO = 0
  246:       UPPER = LSAME( UPLO, 'U' )
  247:       NOTRAN = LSAME( TRANS, 'N' )
  248:       NOUNIT = LSAME( DIAG, 'N' )
  249: *
  250:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  251:          INFO = -1
  252:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  253:      $         LSAME( TRANS, 'C' ) ) THEN
  254:          INFO = -2
  255:       ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  256:          INFO = -3
  257:       ELSE IF( N.LT.0 ) THEN
  258:          INFO = -4
  259:       ELSE IF( KD.LT.0 ) THEN
  260:          INFO = -5
  261:       ELSE IF( NRHS.LT.0 ) THEN
  262:          INFO = -6
  263:       ELSE IF( LDAB.LT.KD+1 ) THEN
  264:          INFO = -8
  265:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  266:          INFO = -10
  267:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  268:          INFO = -12
  269:       END IF
  270:       IF( INFO.NE.0 ) THEN
  271:          CALL XERBLA( 'ZTBRFS', -INFO )
  272:          RETURN
  273:       END IF
  274: *
  275: *     Quick return if possible
  276: *
  277:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  278:          DO 10 J = 1, NRHS
  279:             FERR( J ) = ZERO
  280:             BERR( J ) = ZERO
  281:    10    CONTINUE
  282:          RETURN
  283:       END IF
  284: *
  285:       IF( NOTRAN ) THEN
  286:          TRANSN = 'N'
  287:          TRANST = 'C'
  288:       ELSE
  289:          TRANSN = 'C'
  290:          TRANST = 'N'
  291:       END IF
  292: *
  293: *     NZ = maximum number of nonzero elements in each row of A, plus 1
  294: *
  295:       NZ = KD + 2
  296:       EPS = DLAMCH( 'Epsilon' )
  297:       SAFMIN = DLAMCH( 'Safe minimum' )
  298:       SAFE1 = NZ*SAFMIN
  299:       SAFE2 = SAFE1 / EPS
  300: *
  301: *     Do for each right hand side
  302: *
  303:       DO 250 J = 1, NRHS
  304: *
  305: *        Compute residual R = B - op(A) * X,
  306: *        where op(A) = A, A**T, or A**H, depending on TRANS.
  307: *
  308:          CALL ZCOPY( N, X( 1, J ), 1, WORK, 1 )
  309:          CALL ZTBMV( UPLO, TRANS, DIAG, N, KD, AB, LDAB, WORK, 1 )
  310:          CALL ZAXPY( N, -ONE, B( 1, J ), 1, WORK, 1 )
  311: *
  312: *        Compute componentwise relative backward error from formula
  313: *
  314: *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
  315: *
  316: *        where abs(Z) is the componentwise absolute value of the matrix
  317: *        or vector Z.  If the i-th component of the denominator is less
  318: *        than SAFE2, then SAFE1 is added to the i-th components of the
  319: *        numerator and denominator before dividing.
  320: *
  321:          DO 20 I = 1, N
  322:             RWORK( I ) = CABS1( B( I, J ) )
  323:    20    CONTINUE
  324: *
  325:          IF( NOTRAN ) THEN
  326: *
  327: *           Compute abs(A)*abs(X) + abs(B).
  328: *
  329:             IF( UPPER ) THEN
  330:                IF( NOUNIT ) THEN
  331:                   DO 40 K = 1, N
  332:                      XK = CABS1( X( K, J ) )
  333:                      DO 30 I = MAX( 1, K-KD ), K
  334:                         RWORK( I ) = RWORK( I ) +
  335:      $                               CABS1( AB( KD+1+I-K, K ) )*XK
  336:    30                CONTINUE
  337:    40             CONTINUE
  338:                ELSE
  339:                   DO 60 K = 1, N
  340:                      XK = CABS1( X( K, J ) )
  341:                      DO 50 I = MAX( 1, K-KD ), K - 1
  342:                         RWORK( I ) = RWORK( I ) +
  343:      $                               CABS1( AB( KD+1+I-K, K ) )*XK
  344:    50                CONTINUE
  345:                      RWORK( K ) = RWORK( K ) + XK
  346:    60             CONTINUE
  347:                END IF
  348:             ELSE
  349:                IF( NOUNIT ) THEN
  350:                   DO 80 K = 1, N
  351:                      XK = CABS1( X( K, J ) )
  352:                      DO 70 I = K, MIN( N, K+KD )
  353:                         RWORK( I ) = RWORK( I ) +
  354:      $                               CABS1( AB( 1+I-K, K ) )*XK
  355:    70                CONTINUE
  356:    80             CONTINUE
  357:                ELSE
  358:                   DO 100 K = 1, N
  359:                      XK = CABS1( X( K, J ) )
  360:                      DO 90 I = K + 1, MIN( N, K+KD )
  361:                         RWORK( I ) = RWORK( I ) +
  362:      $                               CABS1( AB( 1+I-K, K ) )*XK
  363:    90                CONTINUE
  364:                      RWORK( K ) = RWORK( K ) + XK
  365:   100             CONTINUE
  366:                END IF
  367:             END IF
  368:          ELSE
  369: *
  370: *           Compute abs(A**H)*abs(X) + abs(B).
  371: *
  372:             IF( UPPER ) THEN
  373:                IF( NOUNIT ) THEN
  374:                   DO 120 K = 1, N
  375:                      S = ZERO
  376:                      DO 110 I = MAX( 1, K-KD ), K
  377:                         S = S + CABS1( AB( KD+1+I-K, K ) )*
  378:      $                      CABS1( X( I, J ) )
  379:   110                CONTINUE
  380:                      RWORK( K ) = RWORK( K ) + S
  381:   120             CONTINUE
  382:                ELSE
  383:                   DO 140 K = 1, N
  384:                      S = CABS1( X( K, J ) )
  385:                      DO 130 I = MAX( 1, K-KD ), K - 1
  386:                         S = S + CABS1( AB( KD+1+I-K, K ) )*
  387:      $                      CABS1( X( I, J ) )
  388:   130                CONTINUE
  389:                      RWORK( K ) = RWORK( K ) + S
  390:   140             CONTINUE
  391:                END IF
  392:             ELSE
  393:                IF( NOUNIT ) THEN
  394:                   DO 160 K = 1, N
  395:                      S = ZERO
  396:                      DO 150 I = K, MIN( N, K+KD )
  397:                         S = S + CABS1( AB( 1+I-K, K ) )*
  398:      $                      CABS1( X( I, J ) )
  399:   150                CONTINUE
  400:                      RWORK( K ) = RWORK( K ) + S
  401:   160             CONTINUE
  402:                ELSE
  403:                   DO 180 K = 1, N
  404:                      S = CABS1( X( K, J ) )
  405:                      DO 170 I = K + 1, MIN( N, K+KD )
  406:                         S = S + CABS1( AB( 1+I-K, K ) )*
  407:      $                      CABS1( X( I, J ) )
  408:   170                CONTINUE
  409:                      RWORK( K ) = RWORK( K ) + S
  410:   180             CONTINUE
  411:                END IF
  412:             END IF
  413:          END IF
  414:          S = ZERO
  415:          DO 190 I = 1, N
  416:             IF( RWORK( I ).GT.SAFE2 ) THEN
  417:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
  418:             ELSE
  419:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
  420:      $             ( RWORK( I )+SAFE1 ) )
  421:             END IF
  422:   190    CONTINUE
  423:          BERR( J ) = S
  424: *
  425: *        Bound error from formula
  426: *
  427: *        norm(X - XTRUE) / norm(X) .le. FERR =
  428: *        norm( abs(inv(op(A)))*
  429: *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
  430: *
  431: *        where
  432: *          norm(Z) is the magnitude of the largest component of Z
  433: *          inv(op(A)) is the inverse of op(A)
  434: *          abs(Z) is the componentwise absolute value of the matrix or
  435: *             vector Z
  436: *          NZ is the maximum number of nonzeros in any row of A, plus 1
  437: *          EPS is machine epsilon
  438: *
  439: *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
  440: *        is incremented by SAFE1 if the i-th component of
  441: *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
  442: *
  443: *        Use ZLACN2 to estimate the infinity-norm of the matrix
  444: *           inv(op(A)) * diag(W),
  445: *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
  446: *
  447:          DO 200 I = 1, N
  448:             IF( RWORK( I ).GT.SAFE2 ) THEN
  449:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
  450:             ELSE
  451:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
  452:      $                      SAFE1
  453:             END IF
  454:   200    CONTINUE
  455: *
  456:          KASE = 0
  457:   210    CONTINUE
  458:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
  459:          IF( KASE.NE.0 ) THEN
  460:             IF( KASE.EQ.1 ) THEN
  461: *
  462: *              Multiply by diag(W)*inv(op(A)**H).
  463: *
  464:                CALL ZTBSV( UPLO, TRANST, DIAG, N, KD, AB, LDAB, WORK,
  465:      $                     1 )
  466:                DO 220 I = 1, N
  467:                   WORK( I ) = RWORK( I )*WORK( I )
  468:   220          CONTINUE
  469:             ELSE
  470: *
  471: *              Multiply by inv(op(A))*diag(W).
  472: *
  473:                DO 230 I = 1, N
  474:                   WORK( I ) = RWORK( I )*WORK( I )
  475:   230          CONTINUE
  476:                CALL ZTBSV( UPLO, TRANSN, DIAG, N, KD, AB, LDAB, WORK,
  477:      $                     1 )
  478:             END IF
  479:             GO TO 210
  480:          END IF
  481: *
  482: *        Normalize error.
  483: *
  484:          LSTRES = ZERO
  485:          DO 240 I = 1, N
  486:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
  487:   240    CONTINUE
  488:          IF( LSTRES.NE.ZERO )
  489:      $      FERR( J ) = FERR( J ) / LSTRES
  490: *
  491:   250 CONTINUE
  492: *
  493:       RETURN
  494: *
  495: *     End of ZTBRFS
  496: *
  497:       END

CVSweb interface <joel.bertrand@systella.fr>