File:  [local] / rpl / lapack / lapack / zsytrs_rook.f
Revision 1.2: download - view: text, annotated - select for diffs - revision graph
Mon Jan 27 09:28:43 2014 UTC (10 years, 3 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_23, rpl-4_1_22, rpl-4_1_21, rpl-4_1_20, rpl-4_1_19, rpl-4_1_18, rpl-4_1_17, HEAD
Cohérence.

    1: *> \brief \b ZSYTRS_ROOK
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZSYTRS_ROOK + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytrs_rook.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytrs_rook.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytrs_rook.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZSYTRS_ROOK( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
   22:    23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, LDA, LDB, N, NRHS
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       COMPLEX*16         A( LDA, * ), B( LDB, * )
   30: *       ..
   31: *  
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZSYTRS_ROOK solves a system of linear equations A*X = B with
   39: *> a complex symmetric matrix A using the factorization A = U*D*U**T or
   40: *> A = L*D*L**T computed by ZSYTRF_ROOK.
   41: *> \endverbatim
   42: *
   43: *  Arguments:
   44: *  ==========
   45: *
   46: *> \param[in] UPLO
   47: *> \verbatim
   48: *>          UPLO is CHARACTER*1
   49: *>          Specifies whether the details of the factorization are stored
   50: *>          as an upper or lower triangular matrix.
   51: *>          = 'U':  Upper triangular, form is A = U*D*U**T;
   52: *>          = 'L':  Lower triangular, form is A = L*D*L**T.
   53: *> \endverbatim
   54: *>
   55: *> \param[in] N
   56: *> \verbatim
   57: *>          N is INTEGER
   58: *>          The order of the matrix A.  N >= 0.
   59: *> \endverbatim
   60: *>
   61: *> \param[in] NRHS
   62: *> \verbatim
   63: *>          NRHS is INTEGER
   64: *>          The number of right hand sides, i.e., the number of columns
   65: *>          of the matrix B.  NRHS >= 0.
   66: *> \endverbatim
   67: *>
   68: *> \param[in] A
   69: *> \verbatim
   70: *>          A is COMPLEX*16 array, dimension (LDA,N)
   71: *>          The block diagonal matrix D and the multipliers used to
   72: *>          obtain the factor U or L as computed by ZSYTRF_ROOK.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] LDA
   76: *> \verbatim
   77: *>          LDA is INTEGER
   78: *>          The leading dimension of the array A.  LDA >= max(1,N).
   79: *> \endverbatim
   80: *>
   81: *> \param[in] IPIV
   82: *> \verbatim
   83: *>          IPIV is INTEGER array, dimension (N)
   84: *>          Details of the interchanges and the block structure of D
   85: *>          as determined by ZSYTRF_ROOK.
   86: *> \endverbatim
   87: *>
   88: *> \param[in,out] B
   89: *> \verbatim
   90: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
   91: *>          On entry, the right hand side matrix B.
   92: *>          On exit, the solution matrix X.
   93: *> \endverbatim
   94: *>
   95: *> \param[in] LDB
   96: *> \verbatim
   97: *>          LDB is INTEGER
   98: *>          The leading dimension of the array B.  LDB >= max(1,N).
   99: *> \endverbatim
  100: *>
  101: *> \param[out] INFO
  102: *> \verbatim
  103: *>          INFO is INTEGER
  104: *>          = 0:  successful exit
  105: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  106: *> \endverbatim
  107: *
  108: *  Authors:
  109: *  ========
  110: *
  111: *> \author Univ. of Tennessee 
  112: *> \author Univ. of California Berkeley 
  113: *> \author Univ. of Colorado Denver 
  114: *> \author NAG Ltd. 
  115: *
  116: *> \date November 2011
  117: *
  118: *> \ingroup complex16SYcomputational
  119: *
  120: *> \par Contributors:
  121: *  ==================
  122: *>
  123: *> \verbatim
  124: *>
  125: *>   November 2011, Igor Kozachenko,
  126: *>                  Computer Science Division,
  127: *>                  University of California, Berkeley
  128: *>
  129: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
  130: *>                  School of Mathematics,
  131: *>                  University of Manchester
  132: *>
  133: *> \endverbatim
  134: *
  135: *  =====================================================================
  136:       SUBROUTINE ZSYTRS_ROOK( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
  137:      $                        INFO )
  138: *
  139: *  -- LAPACK computational routine (version 3.4.0) --
  140: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  141: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  142: *     November 2011
  143: *
  144: *     .. Scalar Arguments ..
  145:       CHARACTER          UPLO
  146:       INTEGER            INFO, LDA, LDB, N, NRHS
  147: *     ..
  148: *     .. Array Arguments ..
  149:       INTEGER            IPIV( * )
  150:       COMPLEX*16         A( LDA, * ), B( LDB, * )
  151: *     ..
  152: *
  153: *  =====================================================================
  154: *
  155: *     .. Parameters ..
  156:       COMPLEX*16         CONE
  157:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  158: *     ..
  159: *     .. Local Scalars ..
  160:       LOGICAL            UPPER
  161:       INTEGER            J, K, KP
  162:       COMPLEX*16         AK, AKM1, AKM1K, BK, BKM1, DENOM
  163: *     ..
  164: *     .. External Functions ..
  165:       LOGICAL            LSAME
  166:       EXTERNAL           LSAME
  167: *     ..
  168: *     .. External Subroutines ..
  169:       EXTERNAL           ZGEMV, ZGERU, ZSCAL, ZSWAP, XERBLA
  170: *     ..
  171: *     .. Intrinsic Functions ..
  172:       INTRINSIC          MAX
  173: *     ..
  174: *     .. Executable Statements ..
  175: *
  176:       INFO = 0
  177:       UPPER = LSAME( UPLO, 'U' )
  178:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  179:          INFO = -1
  180:       ELSE IF( N.LT.0 ) THEN
  181:          INFO = -2
  182:       ELSE IF( NRHS.LT.0 ) THEN
  183:          INFO = -3
  184:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  185:          INFO = -5
  186:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  187:          INFO = -8
  188:       END IF
  189:       IF( INFO.NE.0 ) THEN
  190:          CALL XERBLA( 'ZSYTRS_ROOK', -INFO )
  191:          RETURN
  192:       END IF
  193: *
  194: *     Quick return if possible
  195: *
  196:       IF( N.EQ.0 .OR. NRHS.EQ.0 )
  197:      $   RETURN
  198: *
  199:       IF( UPPER ) THEN
  200: *
  201: *        Solve A*X = B, where A = U*D*U**T.
  202: *
  203: *        First solve U*D*X = B, overwriting B with X.
  204: *
  205: *        K is the main loop index, decreasing from N to 1 in steps of
  206: *        1 or 2, depending on the size of the diagonal blocks.
  207: *
  208:          K = N
  209:    10    CONTINUE
  210: *
  211: *        If K < 1, exit from loop.
  212: *
  213:          IF( K.LT.1 )
  214:      $      GO TO 30
  215: *
  216:          IF( IPIV( K ).GT.0 ) THEN
  217: *
  218: *           1 x 1 diagonal block
  219: *
  220: *           Interchange rows K and IPIV(K).
  221: *
  222:             KP = IPIV( K )
  223:             IF( KP.NE.K )
  224:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  225: *
  226: *           Multiply by inv(U(K)), where U(K) is the transformation
  227: *           stored in column K of A.
  228: *
  229:             CALL ZGERU( K-1, NRHS, -CONE, A( 1, K ), 1, B( K, 1 ), LDB,
  230:      $                 B( 1, 1 ), LDB )
  231: *
  232: *           Multiply by the inverse of the diagonal block.
  233: *
  234:             CALL ZSCAL( NRHS, CONE / A( K, K ), B( K, 1 ), LDB )
  235:             K = K - 1
  236:          ELSE
  237: *
  238: *           2 x 2 diagonal block
  239: *
  240: *           Interchange rows K and -IPIV(K) THEN K-1 and -IPIV(K-1)
  241: *
  242:             KP = -IPIV( K )
  243:             IF( KP.NE.K )
  244:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  245: *
  246:             KP = -IPIV( K-1 )
  247:             IF( KP.NE.K-1 )
  248:      $         CALL ZSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
  249: *
  250: *           Multiply by inv(U(K)), where U(K) is the transformation
  251: *           stored in columns K-1 and K of A.
  252: *
  253:             IF( K.GT.2 ) THEN
  254:                CALL ZGERU( K-2, NRHS,-CONE, A( 1, K ), 1, B( K, 1 ),
  255:      $                    LDB, B( 1, 1 ), LDB )
  256:                CALL ZGERU( K-2, NRHS,-CONE, A( 1, K-1 ), 1, B( K-1, 1 ),
  257:      $                    LDB, B( 1, 1 ), LDB )
  258:             END IF
  259: *
  260: *           Multiply by the inverse of the diagonal block.
  261: *
  262:             AKM1K = A( K-1, K )
  263:             AKM1 = A( K-1, K-1 ) / AKM1K
  264:             AK = A( K, K ) / AKM1K
  265:             DENOM = AKM1*AK - CONE
  266:             DO 20 J = 1, NRHS
  267:                BKM1 = B( K-1, J ) / AKM1K
  268:                BK = B( K, J ) / AKM1K
  269:                B( K-1, J ) = ( AK*BKM1-BK ) / DENOM
  270:                B( K, J ) = ( AKM1*BK-BKM1 ) / DENOM
  271:    20       CONTINUE
  272:             K = K - 2
  273:          END IF
  274: *
  275:          GO TO 10
  276:    30    CONTINUE
  277: *
  278: *        Next solve U**T *X = B, overwriting B with X.
  279: *
  280: *        K is the main loop index, increasing from 1 to N in steps of
  281: *        1 or 2, depending on the size of the diagonal blocks.
  282: *
  283:          K = 1
  284:    40    CONTINUE
  285: *
  286: *        If K > N, exit from loop.
  287: *
  288:          IF( K.GT.N )
  289:      $      GO TO 50
  290: *
  291:          IF( IPIV( K ).GT.0 ) THEN
  292: *
  293: *           1 x 1 diagonal block
  294: *
  295: *           Multiply by inv(U**T(K)), where U(K) is the transformation
  296: *           stored in column K of A.
  297: *
  298:             IF( K.GT.1 )
  299:      $         CALL ZGEMV( 'Transpose', K-1, NRHS, -CONE, B,
  300:      $                     LDB, A( 1, K ), 1, CONE, B( K, 1 ), LDB )
  301: *
  302: *           Interchange rows K and IPIV(K).
  303: *
  304:             KP = IPIV( K )
  305:             IF( KP.NE.K )
  306:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  307:             K = K + 1
  308:          ELSE
  309: *
  310: *           2 x 2 diagonal block
  311: *
  312: *           Multiply by inv(U**T(K+1)), where U(K+1) is the transformation
  313: *           stored in columns K and K+1 of A.
  314: *
  315:             IF( K.GT.1 ) THEN
  316:                CALL ZGEMV( 'Transpose', K-1, NRHS, -CONE, B,
  317:      $                     LDB, A( 1, K ), 1, CONE, B( K, 1 ), LDB )
  318:                CALL ZGEMV( 'Transpose', K-1, NRHS, -CONE, B,
  319:      $                     LDB, A( 1, K+1 ), 1, CONE, B( K+1, 1 ), LDB )
  320:             END IF
  321: *
  322: *           Interchange rows K and -IPIV(K) THEN K+1 and -IPIV(K+1).
  323: *
  324:             KP = -IPIV( K )
  325:             IF( KP.NE.K )
  326:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  327: *
  328:             KP = -IPIV( K+1 )
  329:             IF( KP.NE.K+1 )
  330:      $         CALL ZSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
  331: *
  332:             K = K + 2
  333:          END IF
  334: *
  335:          GO TO 40
  336:    50    CONTINUE
  337: *
  338:       ELSE
  339: *
  340: *        Solve A*X = B, where A = L*D*L**T.
  341: *
  342: *        First solve L*D*X = B, overwriting B with X.
  343: *
  344: *        K is the main loop index, increasing from 1 to N in steps of
  345: *        1 or 2, depending on the size of the diagonal blocks.
  346: *
  347:          K = 1
  348:    60    CONTINUE
  349: *
  350: *        If K > N, exit from loop.
  351: *
  352:          IF( K.GT.N )
  353:      $      GO TO 80
  354: *
  355:          IF( IPIV( K ).GT.0 ) THEN
  356: *
  357: *           1 x 1 diagonal block
  358: *
  359: *           Interchange rows K and IPIV(K).
  360: *
  361:             KP = IPIV( K )
  362:             IF( KP.NE.K )
  363:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  364: *
  365: *           Multiply by inv(L(K)), where L(K) is the transformation
  366: *           stored in column K of A.
  367: *
  368:             IF( K.LT.N )
  369:      $         CALL ZGERU( N-K, NRHS, -CONE, A( K+1, K ), 1, B( K, 1 ),
  370:      $                    LDB, B( K+1, 1 ), LDB )
  371: *
  372: *           Multiply by the inverse of the diagonal block.
  373: *
  374:             CALL ZSCAL( NRHS, CONE / A( K, K ), B( K, 1 ), LDB )
  375:             K = K + 1
  376:          ELSE
  377: *
  378: *           2 x 2 diagonal block
  379: *
  380: *           Interchange rows K and -IPIV(K) THEN K+1 and -IPIV(K+1)
  381: *
  382:             KP = -IPIV( K )
  383:             IF( KP.NE.K )
  384:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  385: *
  386:             KP = -IPIV( K+1 )
  387:             IF( KP.NE.K+1 )
  388:      $         CALL ZSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
  389: *
  390: *           Multiply by inv(L(K)), where L(K) is the transformation
  391: *           stored in columns K and K+1 of A.
  392: *
  393:             IF( K.LT.N-1 ) THEN
  394:                CALL ZGERU( N-K-1, NRHS,-CONE, A( K+2, K ), 1, B( K, 1 ),
  395:      $                    LDB, B( K+2, 1 ), LDB )
  396:                CALL ZGERU( N-K-1, NRHS,-CONE, A( K+2, K+1 ), 1,
  397:      $                    B( K+1, 1 ), LDB, B( K+2, 1 ), LDB )
  398:             END IF
  399: *
  400: *           Multiply by the inverse of the diagonal block.
  401: *
  402:             AKM1K = A( K+1, K )
  403:             AKM1 = A( K, K ) / AKM1K
  404:             AK = A( K+1, K+1 ) / AKM1K
  405:             DENOM = AKM1*AK - CONE
  406:             DO 70 J = 1, NRHS
  407:                BKM1 = B( K, J ) / AKM1K
  408:                BK = B( K+1, J ) / AKM1K
  409:                B( K, J ) = ( AK*BKM1-BK ) / DENOM
  410:                B( K+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
  411:    70       CONTINUE
  412:             K = K + 2
  413:          END IF
  414: *
  415:          GO TO 60
  416:    80    CONTINUE
  417: *
  418: *        Next solve L**T *X = B, overwriting B with X.
  419: *
  420: *        K is the main loop index, decreasing from N to 1 in steps of
  421: *        1 or 2, depending on the size of the diagonal blocks.
  422: *
  423:          K = N
  424:    90    CONTINUE
  425: *
  426: *        If K < 1, exit from loop.
  427: *
  428:          IF( K.LT.1 )
  429:      $      GO TO 100
  430: *
  431:          IF( IPIV( K ).GT.0 ) THEN
  432: *
  433: *           1 x 1 diagonal block
  434: *
  435: *           Multiply by inv(L**T(K)), where L(K) is the transformation
  436: *           stored in column K of A.
  437: *
  438:             IF( K.LT.N )
  439:      $         CALL ZGEMV( 'Transpose', N-K, NRHS, -CONE, B( K+1, 1 ),
  440:      $                     LDB, A( K+1, K ), 1, CONE, B( K, 1 ), LDB )
  441: *
  442: *           Interchange rows K and IPIV(K).
  443: *
  444:             KP = IPIV( K )
  445:             IF( KP.NE.K )
  446:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  447:             K = K - 1
  448:          ELSE
  449: *
  450: *           2 x 2 diagonal block
  451: *
  452: *           Multiply by inv(L**T(K-1)), where L(K-1) is the transformation
  453: *           stored in columns K-1 and K of A.
  454: *
  455:             IF( K.LT.N ) THEN
  456:                CALL ZGEMV( 'Transpose', N-K, NRHS, -CONE, B( K+1, 1 ),
  457:      $                     LDB, A( K+1, K ), 1, CONE, B( K, 1 ), LDB )
  458:                CALL ZGEMV( 'Transpose', N-K, NRHS, -CONE, B( K+1, 1 ),
  459:      $                     LDB, A( K+1, K-1 ), 1, CONE, B( K-1, 1 ),
  460:      $                     LDB )
  461:             END IF
  462: *
  463: *           Interchange rows K and -IPIV(K) THEN K-1 and -IPIV(K-1)
  464: *
  465:             KP = -IPIV( K )
  466:             IF( KP.NE.K )
  467:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  468: *
  469:             KP = -IPIV( K-1 )
  470:             IF( KP.NE.K-1 )
  471:      $         CALL ZSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
  472: *
  473:             K = K - 2
  474:          END IF
  475: *
  476:          GO TO 90
  477:   100    CONTINUE
  478:       END IF
  479: *
  480:       RETURN
  481: *
  482: *     End of ZSYTRS_ROOK
  483: *
  484:       END

CVSweb interface <joel.bertrand@systella.fr>