Annotation of rpl/lapack/lapack/zsytrs_rook.f, revision 1.6

1.1       bertrand    1: *> \brief \b ZSYTRS_ROOK
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.5       bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.1       bertrand    7: *
                      8: *> \htmlonly
1.5       bertrand    9: *> Download ZSYTRS_ROOK + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytrs_rook.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytrs_rook.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytrs_rook.f">
1.1       bertrand   15: *> [TXT]</a>
1.5       bertrand   16: *> \endhtmlonly
1.1       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZSYTRS_ROOK( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
1.5       bertrand   22: *
1.1       bertrand   23: *       .. Scalar Arguments ..
                     24: *       CHARACTER          UPLO
                     25: *       INTEGER            INFO, LDA, LDB, N, NRHS
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       INTEGER            IPIV( * )
                     29: *       COMPLEX*16         A( LDA, * ), B( LDB, * )
                     30: *       ..
1.5       bertrand   31: *
1.1       bertrand   32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> ZSYTRS_ROOK solves a system of linear equations A*X = B with
                     39: *> a complex symmetric matrix A using the factorization A = U*D*U**T or
                     40: *> A = L*D*L**T computed by ZSYTRF_ROOK.
                     41: *> \endverbatim
                     42: *
                     43: *  Arguments:
                     44: *  ==========
                     45: *
                     46: *> \param[in] UPLO
                     47: *> \verbatim
                     48: *>          UPLO is CHARACTER*1
                     49: *>          Specifies whether the details of the factorization are stored
                     50: *>          as an upper or lower triangular matrix.
                     51: *>          = 'U':  Upper triangular, form is A = U*D*U**T;
                     52: *>          = 'L':  Lower triangular, form is A = L*D*L**T.
                     53: *> \endverbatim
                     54: *>
                     55: *> \param[in] N
                     56: *> \verbatim
                     57: *>          N is INTEGER
                     58: *>          The order of the matrix A.  N >= 0.
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in] NRHS
                     62: *> \verbatim
                     63: *>          NRHS is INTEGER
                     64: *>          The number of right hand sides, i.e., the number of columns
                     65: *>          of the matrix B.  NRHS >= 0.
                     66: *> \endverbatim
                     67: *>
                     68: *> \param[in] A
                     69: *> \verbatim
                     70: *>          A is COMPLEX*16 array, dimension (LDA,N)
                     71: *>          The block diagonal matrix D and the multipliers used to
                     72: *>          obtain the factor U or L as computed by ZSYTRF_ROOK.
                     73: *> \endverbatim
                     74: *>
                     75: *> \param[in] LDA
                     76: *> \verbatim
                     77: *>          LDA is INTEGER
                     78: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     79: *> \endverbatim
                     80: *>
                     81: *> \param[in] IPIV
                     82: *> \verbatim
                     83: *>          IPIV is INTEGER array, dimension (N)
                     84: *>          Details of the interchanges and the block structure of D
                     85: *>          as determined by ZSYTRF_ROOK.
                     86: *> \endverbatim
                     87: *>
                     88: *> \param[in,out] B
                     89: *> \verbatim
                     90: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                     91: *>          On entry, the right hand side matrix B.
                     92: *>          On exit, the solution matrix X.
                     93: *> \endverbatim
                     94: *>
                     95: *> \param[in] LDB
                     96: *> \verbatim
                     97: *>          LDB is INTEGER
                     98: *>          The leading dimension of the array B.  LDB >= max(1,N).
                     99: *> \endverbatim
                    100: *>
                    101: *> \param[out] INFO
                    102: *> \verbatim
                    103: *>          INFO is INTEGER
                    104: *>          = 0:  successful exit
                    105: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    106: *> \endverbatim
                    107: *
                    108: *  Authors:
                    109: *  ========
                    110: *
1.5       bertrand  111: *> \author Univ. of Tennessee
                    112: *> \author Univ. of California Berkeley
                    113: *> \author Univ. of Colorado Denver
                    114: *> \author NAG Ltd.
1.1       bertrand  115: *
1.5       bertrand  116: *> \date December 2016
1.1       bertrand  117: *
                    118: *> \ingroup complex16SYcomputational
                    119: *
                    120: *> \par Contributors:
                    121: *  ==================
                    122: *>
                    123: *> \verbatim
                    124: *>
1.5       bertrand  125: *>   December 2016, Igor Kozachenko,
1.1       bertrand  126: *>                  Computer Science Division,
                    127: *>                  University of California, Berkeley
                    128: *>
                    129: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                    130: *>                  School of Mathematics,
                    131: *>                  University of Manchester
                    132: *>
                    133: *> \endverbatim
                    134: *
                    135: *  =====================================================================
                    136:       SUBROUTINE ZSYTRS_ROOK( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
                    137:      $                        INFO )
                    138: *
1.5       bertrand  139: *  -- LAPACK computational routine (version 3.7.0) --
1.1       bertrand  140: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    141: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.5       bertrand  142: *     December 2016
1.1       bertrand  143: *
                    144: *     .. Scalar Arguments ..
                    145:       CHARACTER          UPLO
                    146:       INTEGER            INFO, LDA, LDB, N, NRHS
                    147: *     ..
                    148: *     .. Array Arguments ..
                    149:       INTEGER            IPIV( * )
                    150:       COMPLEX*16         A( LDA, * ), B( LDB, * )
                    151: *     ..
                    152: *
                    153: *  =====================================================================
                    154: *
                    155: *     .. Parameters ..
                    156:       COMPLEX*16         CONE
                    157:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
                    158: *     ..
                    159: *     .. Local Scalars ..
                    160:       LOGICAL            UPPER
                    161:       INTEGER            J, K, KP
                    162:       COMPLEX*16         AK, AKM1, AKM1K, BK, BKM1, DENOM
                    163: *     ..
                    164: *     .. External Functions ..
                    165:       LOGICAL            LSAME
                    166:       EXTERNAL           LSAME
                    167: *     ..
                    168: *     .. External Subroutines ..
                    169:       EXTERNAL           ZGEMV, ZGERU, ZSCAL, ZSWAP, XERBLA
                    170: *     ..
                    171: *     .. Intrinsic Functions ..
                    172:       INTRINSIC          MAX
                    173: *     ..
                    174: *     .. Executable Statements ..
                    175: *
                    176:       INFO = 0
                    177:       UPPER = LSAME( UPLO, 'U' )
                    178:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    179:          INFO = -1
                    180:       ELSE IF( N.LT.0 ) THEN
                    181:          INFO = -2
                    182:       ELSE IF( NRHS.LT.0 ) THEN
                    183:          INFO = -3
                    184:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    185:          INFO = -5
                    186:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    187:          INFO = -8
                    188:       END IF
                    189:       IF( INFO.NE.0 ) THEN
                    190:          CALL XERBLA( 'ZSYTRS_ROOK', -INFO )
                    191:          RETURN
                    192:       END IF
                    193: *
                    194: *     Quick return if possible
                    195: *
                    196:       IF( N.EQ.0 .OR. NRHS.EQ.0 )
                    197:      $   RETURN
                    198: *
                    199:       IF( UPPER ) THEN
                    200: *
                    201: *        Solve A*X = B, where A = U*D*U**T.
                    202: *
                    203: *        First solve U*D*X = B, overwriting B with X.
                    204: *
                    205: *        K is the main loop index, decreasing from N to 1 in steps of
                    206: *        1 or 2, depending on the size of the diagonal blocks.
                    207: *
                    208:          K = N
                    209:    10    CONTINUE
                    210: *
                    211: *        If K < 1, exit from loop.
                    212: *
                    213:          IF( K.LT.1 )
                    214:      $      GO TO 30
                    215: *
                    216:          IF( IPIV( K ).GT.0 ) THEN
                    217: *
                    218: *           1 x 1 diagonal block
                    219: *
                    220: *           Interchange rows K and IPIV(K).
                    221: *
                    222:             KP = IPIV( K )
                    223:             IF( KP.NE.K )
                    224:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    225: *
                    226: *           Multiply by inv(U(K)), where U(K) is the transformation
                    227: *           stored in column K of A.
                    228: *
                    229:             CALL ZGERU( K-1, NRHS, -CONE, A( 1, K ), 1, B( K, 1 ), LDB,
                    230:      $                 B( 1, 1 ), LDB )
                    231: *
                    232: *           Multiply by the inverse of the diagonal block.
                    233: *
                    234:             CALL ZSCAL( NRHS, CONE / A( K, K ), B( K, 1 ), LDB )
                    235:             K = K - 1
                    236:          ELSE
                    237: *
                    238: *           2 x 2 diagonal block
                    239: *
                    240: *           Interchange rows K and -IPIV(K) THEN K-1 and -IPIV(K-1)
                    241: *
                    242:             KP = -IPIV( K )
                    243:             IF( KP.NE.K )
                    244:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    245: *
                    246:             KP = -IPIV( K-1 )
                    247:             IF( KP.NE.K-1 )
                    248:      $         CALL ZSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
                    249: *
                    250: *           Multiply by inv(U(K)), where U(K) is the transformation
                    251: *           stored in columns K-1 and K of A.
                    252: *
                    253:             IF( K.GT.2 ) THEN
                    254:                CALL ZGERU( K-2, NRHS,-CONE, A( 1, K ), 1, B( K, 1 ),
                    255:      $                    LDB, B( 1, 1 ), LDB )
                    256:                CALL ZGERU( K-2, NRHS,-CONE, A( 1, K-1 ), 1, B( K-1, 1 ),
                    257:      $                    LDB, B( 1, 1 ), LDB )
                    258:             END IF
                    259: *
                    260: *           Multiply by the inverse of the diagonal block.
                    261: *
                    262:             AKM1K = A( K-1, K )
                    263:             AKM1 = A( K-1, K-1 ) / AKM1K
                    264:             AK = A( K, K ) / AKM1K
                    265:             DENOM = AKM1*AK - CONE
                    266:             DO 20 J = 1, NRHS
                    267:                BKM1 = B( K-1, J ) / AKM1K
                    268:                BK = B( K, J ) / AKM1K
                    269:                B( K-1, J ) = ( AK*BKM1-BK ) / DENOM
                    270:                B( K, J ) = ( AKM1*BK-BKM1 ) / DENOM
                    271:    20       CONTINUE
                    272:             K = K - 2
                    273:          END IF
                    274: *
                    275:          GO TO 10
                    276:    30    CONTINUE
                    277: *
                    278: *        Next solve U**T *X = B, overwriting B with X.
                    279: *
                    280: *        K is the main loop index, increasing from 1 to N in steps of
                    281: *        1 or 2, depending on the size of the diagonal blocks.
                    282: *
                    283:          K = 1
                    284:    40    CONTINUE
                    285: *
                    286: *        If K > N, exit from loop.
                    287: *
                    288:          IF( K.GT.N )
                    289:      $      GO TO 50
                    290: *
                    291:          IF( IPIV( K ).GT.0 ) THEN
                    292: *
                    293: *           1 x 1 diagonal block
                    294: *
                    295: *           Multiply by inv(U**T(K)), where U(K) is the transformation
                    296: *           stored in column K of A.
                    297: *
                    298:             IF( K.GT.1 )
                    299:      $         CALL ZGEMV( 'Transpose', K-1, NRHS, -CONE, B,
                    300:      $                     LDB, A( 1, K ), 1, CONE, B( K, 1 ), LDB )
                    301: *
                    302: *           Interchange rows K and IPIV(K).
                    303: *
                    304:             KP = IPIV( K )
                    305:             IF( KP.NE.K )
                    306:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    307:             K = K + 1
                    308:          ELSE
                    309: *
                    310: *           2 x 2 diagonal block
                    311: *
                    312: *           Multiply by inv(U**T(K+1)), where U(K+1) is the transformation
                    313: *           stored in columns K and K+1 of A.
                    314: *
                    315:             IF( K.GT.1 ) THEN
                    316:                CALL ZGEMV( 'Transpose', K-1, NRHS, -CONE, B,
                    317:      $                     LDB, A( 1, K ), 1, CONE, B( K, 1 ), LDB )
                    318:                CALL ZGEMV( 'Transpose', K-1, NRHS, -CONE, B,
                    319:      $                     LDB, A( 1, K+1 ), 1, CONE, B( K+1, 1 ), LDB )
                    320:             END IF
                    321: *
                    322: *           Interchange rows K and -IPIV(K) THEN K+1 and -IPIV(K+1).
                    323: *
                    324:             KP = -IPIV( K )
                    325:             IF( KP.NE.K )
                    326:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    327: *
                    328:             KP = -IPIV( K+1 )
                    329:             IF( KP.NE.K+1 )
                    330:      $         CALL ZSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
                    331: *
                    332:             K = K + 2
                    333:          END IF
                    334: *
                    335:          GO TO 40
                    336:    50    CONTINUE
                    337: *
                    338:       ELSE
                    339: *
                    340: *        Solve A*X = B, where A = L*D*L**T.
                    341: *
                    342: *        First solve L*D*X = B, overwriting B with X.
                    343: *
                    344: *        K is the main loop index, increasing from 1 to N in steps of
                    345: *        1 or 2, depending on the size of the diagonal blocks.
                    346: *
                    347:          K = 1
                    348:    60    CONTINUE
                    349: *
                    350: *        If K > N, exit from loop.
                    351: *
                    352:          IF( K.GT.N )
                    353:      $      GO TO 80
                    354: *
                    355:          IF( IPIV( K ).GT.0 ) THEN
                    356: *
                    357: *           1 x 1 diagonal block
                    358: *
                    359: *           Interchange rows K and IPIV(K).
                    360: *
                    361:             KP = IPIV( K )
                    362:             IF( KP.NE.K )
                    363:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    364: *
                    365: *           Multiply by inv(L(K)), where L(K) is the transformation
                    366: *           stored in column K of A.
                    367: *
                    368:             IF( K.LT.N )
                    369:      $         CALL ZGERU( N-K, NRHS, -CONE, A( K+1, K ), 1, B( K, 1 ),
                    370:      $                    LDB, B( K+1, 1 ), LDB )
                    371: *
                    372: *           Multiply by the inverse of the diagonal block.
                    373: *
                    374:             CALL ZSCAL( NRHS, CONE / A( K, K ), B( K, 1 ), LDB )
                    375:             K = K + 1
                    376:          ELSE
                    377: *
                    378: *           2 x 2 diagonal block
                    379: *
                    380: *           Interchange rows K and -IPIV(K) THEN K+1 and -IPIV(K+1)
                    381: *
                    382:             KP = -IPIV( K )
                    383:             IF( KP.NE.K )
                    384:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    385: *
                    386:             KP = -IPIV( K+1 )
                    387:             IF( KP.NE.K+1 )
                    388:      $         CALL ZSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
                    389: *
                    390: *           Multiply by inv(L(K)), where L(K) is the transformation
                    391: *           stored in columns K and K+1 of A.
                    392: *
                    393:             IF( K.LT.N-1 ) THEN
                    394:                CALL ZGERU( N-K-1, NRHS,-CONE, A( K+2, K ), 1, B( K, 1 ),
                    395:      $                    LDB, B( K+2, 1 ), LDB )
                    396:                CALL ZGERU( N-K-1, NRHS,-CONE, A( K+2, K+1 ), 1,
                    397:      $                    B( K+1, 1 ), LDB, B( K+2, 1 ), LDB )
                    398:             END IF
                    399: *
                    400: *           Multiply by the inverse of the diagonal block.
                    401: *
                    402:             AKM1K = A( K+1, K )
                    403:             AKM1 = A( K, K ) / AKM1K
                    404:             AK = A( K+1, K+1 ) / AKM1K
                    405:             DENOM = AKM1*AK - CONE
                    406:             DO 70 J = 1, NRHS
                    407:                BKM1 = B( K, J ) / AKM1K
                    408:                BK = B( K+1, J ) / AKM1K
                    409:                B( K, J ) = ( AK*BKM1-BK ) / DENOM
                    410:                B( K+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
                    411:    70       CONTINUE
                    412:             K = K + 2
                    413:          END IF
                    414: *
                    415:          GO TO 60
                    416:    80    CONTINUE
                    417: *
                    418: *        Next solve L**T *X = B, overwriting B with X.
                    419: *
                    420: *        K is the main loop index, decreasing from N to 1 in steps of
                    421: *        1 or 2, depending on the size of the diagonal blocks.
                    422: *
                    423:          K = N
                    424:    90    CONTINUE
                    425: *
                    426: *        If K < 1, exit from loop.
                    427: *
                    428:          IF( K.LT.1 )
                    429:      $      GO TO 100
                    430: *
                    431:          IF( IPIV( K ).GT.0 ) THEN
                    432: *
                    433: *           1 x 1 diagonal block
                    434: *
                    435: *           Multiply by inv(L**T(K)), where L(K) is the transformation
                    436: *           stored in column K of A.
                    437: *
                    438:             IF( K.LT.N )
                    439:      $         CALL ZGEMV( 'Transpose', N-K, NRHS, -CONE, B( K+1, 1 ),
                    440:      $                     LDB, A( K+1, K ), 1, CONE, B( K, 1 ), LDB )
                    441: *
                    442: *           Interchange rows K and IPIV(K).
                    443: *
                    444:             KP = IPIV( K )
                    445:             IF( KP.NE.K )
                    446:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    447:             K = K - 1
                    448:          ELSE
                    449: *
                    450: *           2 x 2 diagonal block
                    451: *
                    452: *           Multiply by inv(L**T(K-1)), where L(K-1) is the transformation
                    453: *           stored in columns K-1 and K of A.
                    454: *
                    455:             IF( K.LT.N ) THEN
                    456:                CALL ZGEMV( 'Transpose', N-K, NRHS, -CONE, B( K+1, 1 ),
                    457:      $                     LDB, A( K+1, K ), 1, CONE, B( K, 1 ), LDB )
                    458:                CALL ZGEMV( 'Transpose', N-K, NRHS, -CONE, B( K+1, 1 ),
                    459:      $                     LDB, A( K+1, K-1 ), 1, CONE, B( K-1, 1 ),
                    460:      $                     LDB )
                    461:             END IF
                    462: *
                    463: *           Interchange rows K and -IPIV(K) THEN K-1 and -IPIV(K-1)
                    464: *
                    465:             KP = -IPIV( K )
                    466:             IF( KP.NE.K )
                    467:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
                    468: *
                    469:             KP = -IPIV( K-1 )
                    470:             IF( KP.NE.K-1 )
                    471:      $         CALL ZSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
                    472: *
                    473:             K = K - 2
                    474:          END IF
                    475: *
                    476:          GO TO 90
                    477:   100    CONTINUE
                    478:       END IF
                    479: *
                    480:       RETURN
                    481: *
                    482: *     End of ZSYTRS_ROOK
                    483: *
                    484:       END

CVSweb interface <joel.bertrand@systella.fr>