File:  [local] / rpl / lapack / lapack / zsytrs.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:39 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZSYTRS
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZSYTRS + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytrs.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytrs.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytrs.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZSYTRS( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, LDA, LDB, N, NRHS
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       COMPLEX*16         A( LDA, * ), B( LDB, * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZSYTRS solves a system of linear equations A*X = B with a complex
   39: *> symmetric matrix A using the factorization A = U*D*U**T or
   40: *> A = L*D*L**T computed by ZSYTRF.
   41: *> \endverbatim
   42: *
   43: *  Arguments:
   44: *  ==========
   45: *
   46: *> \param[in] UPLO
   47: *> \verbatim
   48: *>          UPLO is CHARACTER*1
   49: *>          Specifies whether the details of the factorization are stored
   50: *>          as an upper or lower triangular matrix.
   51: *>          = 'U':  Upper triangular, form is A = U*D*U**T;
   52: *>          = 'L':  Lower triangular, form is A = L*D*L**T.
   53: *> \endverbatim
   54: *>
   55: *> \param[in] N
   56: *> \verbatim
   57: *>          N is INTEGER
   58: *>          The order of the matrix A.  N >= 0.
   59: *> \endverbatim
   60: *>
   61: *> \param[in] NRHS
   62: *> \verbatim
   63: *>          NRHS is INTEGER
   64: *>          The number of right hand sides, i.e., the number of columns
   65: *>          of the matrix B.  NRHS >= 0.
   66: *> \endverbatim
   67: *>
   68: *> \param[in] A
   69: *> \verbatim
   70: *>          A is COMPLEX*16 array, dimension (LDA,N)
   71: *>          The block diagonal matrix D and the multipliers used to
   72: *>          obtain the factor U or L as computed by ZSYTRF.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] LDA
   76: *> \verbatim
   77: *>          LDA is INTEGER
   78: *>          The leading dimension of the array A.  LDA >= max(1,N).
   79: *> \endverbatim
   80: *>
   81: *> \param[in] IPIV
   82: *> \verbatim
   83: *>          IPIV is INTEGER array, dimension (N)
   84: *>          Details of the interchanges and the block structure of D
   85: *>          as determined by ZSYTRF.
   86: *> \endverbatim
   87: *>
   88: *> \param[in,out] B
   89: *> \verbatim
   90: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
   91: *>          On entry, the right hand side matrix B.
   92: *>          On exit, the solution matrix X.
   93: *> \endverbatim
   94: *>
   95: *> \param[in] LDB
   96: *> \verbatim
   97: *>          LDB is INTEGER
   98: *>          The leading dimension of the array B.  LDB >= max(1,N).
   99: *> \endverbatim
  100: *>
  101: *> \param[out] INFO
  102: *> \verbatim
  103: *>          INFO is INTEGER
  104: *>          = 0:  successful exit
  105: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  106: *> \endverbatim
  107: *
  108: *  Authors:
  109: *  ========
  110: *
  111: *> \author Univ. of Tennessee
  112: *> \author Univ. of California Berkeley
  113: *> \author Univ. of Colorado Denver
  114: *> \author NAG Ltd.
  115: *
  116: *> \ingroup complex16SYcomputational
  117: *
  118: *  =====================================================================
  119:       SUBROUTINE ZSYTRS( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
  120: *
  121: *  -- LAPACK computational routine --
  122: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  123: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  124: *
  125: *     .. Scalar Arguments ..
  126:       CHARACTER          UPLO
  127:       INTEGER            INFO, LDA, LDB, N, NRHS
  128: *     ..
  129: *     .. Array Arguments ..
  130:       INTEGER            IPIV( * )
  131:       COMPLEX*16         A( LDA, * ), B( LDB, * )
  132: *     ..
  133: *
  134: *  =====================================================================
  135: *
  136: *     .. Parameters ..
  137:       COMPLEX*16         ONE
  138:       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
  139: *     ..
  140: *     .. Local Scalars ..
  141:       LOGICAL            UPPER
  142:       INTEGER            J, K, KP
  143:       COMPLEX*16         AK, AKM1, AKM1K, BK, BKM1, DENOM
  144: *     ..
  145: *     .. External Functions ..
  146:       LOGICAL            LSAME
  147:       EXTERNAL           LSAME
  148: *     ..
  149: *     .. External Subroutines ..
  150:       EXTERNAL           XERBLA, ZGEMV, ZGERU, ZSCAL, ZSWAP
  151: *     ..
  152: *     .. Intrinsic Functions ..
  153:       INTRINSIC          MAX
  154: *     ..
  155: *     .. Executable Statements ..
  156: *
  157:       INFO = 0
  158:       UPPER = LSAME( UPLO, 'U' )
  159:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  160:          INFO = -1
  161:       ELSE IF( N.LT.0 ) THEN
  162:          INFO = -2
  163:       ELSE IF( NRHS.LT.0 ) THEN
  164:          INFO = -3
  165:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  166:          INFO = -5
  167:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  168:          INFO = -8
  169:       END IF
  170:       IF( INFO.NE.0 ) THEN
  171:          CALL XERBLA( 'ZSYTRS', -INFO )
  172:          RETURN
  173:       END IF
  174: *
  175: *     Quick return if possible
  176: *
  177:       IF( N.EQ.0 .OR. NRHS.EQ.0 )
  178:      $   RETURN
  179: *
  180:       IF( UPPER ) THEN
  181: *
  182: *        Solve A*X = B, where A = U*D*U**T.
  183: *
  184: *        First solve U*D*X = B, overwriting B with X.
  185: *
  186: *        K is the main loop index, decreasing from N to 1 in steps of
  187: *        1 or 2, depending on the size of the diagonal blocks.
  188: *
  189:          K = N
  190:    10    CONTINUE
  191: *
  192: *        If K < 1, exit from loop.
  193: *
  194:          IF( K.LT.1 )
  195:      $      GO TO 30
  196: *
  197:          IF( IPIV( K ).GT.0 ) THEN
  198: *
  199: *           1 x 1 diagonal block
  200: *
  201: *           Interchange rows K and IPIV(K).
  202: *
  203:             KP = IPIV( K )
  204:             IF( KP.NE.K )
  205:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  206: *
  207: *           Multiply by inv(U(K)), where U(K) is the transformation
  208: *           stored in column K of A.
  209: *
  210:             CALL ZGERU( K-1, NRHS, -ONE, A( 1, K ), 1, B( K, 1 ), LDB,
  211:      $                  B( 1, 1 ), LDB )
  212: *
  213: *           Multiply by the inverse of the diagonal block.
  214: *
  215:             CALL ZSCAL( NRHS, ONE / A( K, K ), B( K, 1 ), LDB )
  216:             K = K - 1
  217:          ELSE
  218: *
  219: *           2 x 2 diagonal block
  220: *
  221: *           Interchange rows K-1 and -IPIV(K).
  222: *
  223:             KP = -IPIV( K )
  224:             IF( KP.NE.K-1 )
  225:      $         CALL ZSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
  226: *
  227: *           Multiply by inv(U(K)), where U(K) is the transformation
  228: *           stored in columns K-1 and K of A.
  229: *
  230:             CALL ZGERU( K-2, NRHS, -ONE, A( 1, K ), 1, B( K, 1 ), LDB,
  231:      $                  B( 1, 1 ), LDB )
  232:             CALL ZGERU( K-2, NRHS, -ONE, A( 1, K-1 ), 1, B( K-1, 1 ),
  233:      $                  LDB, B( 1, 1 ), LDB )
  234: *
  235: *           Multiply by the inverse of the diagonal block.
  236: *
  237:             AKM1K = A( K-1, K )
  238:             AKM1 = A( K-1, K-1 ) / AKM1K
  239:             AK = A( K, K ) / AKM1K
  240:             DENOM = AKM1*AK - ONE
  241:             DO 20 J = 1, NRHS
  242:                BKM1 = B( K-1, J ) / AKM1K
  243:                BK = B( K, J ) / AKM1K
  244:                B( K-1, J ) = ( AK*BKM1-BK ) / DENOM
  245:                B( K, J ) = ( AKM1*BK-BKM1 ) / DENOM
  246:    20       CONTINUE
  247:             K = K - 2
  248:          END IF
  249: *
  250:          GO TO 10
  251:    30    CONTINUE
  252: *
  253: *        Next solve U**T *X = B, overwriting B with X.
  254: *
  255: *        K is the main loop index, increasing from 1 to N in steps of
  256: *        1 or 2, depending on the size of the diagonal blocks.
  257: *
  258:          K = 1
  259:    40    CONTINUE
  260: *
  261: *        If K > N, exit from loop.
  262: *
  263:          IF( K.GT.N )
  264:      $      GO TO 50
  265: *
  266:          IF( IPIV( K ).GT.0 ) THEN
  267: *
  268: *           1 x 1 diagonal block
  269: *
  270: *           Multiply by inv(U**T(K)), where U(K) is the transformation
  271: *           stored in column K of A.
  272: *
  273:             CALL ZGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB, A( 1, K ),
  274:      $                  1, ONE, B( K, 1 ), LDB )
  275: *
  276: *           Interchange rows K and IPIV(K).
  277: *
  278:             KP = IPIV( K )
  279:             IF( KP.NE.K )
  280:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  281:             K = K + 1
  282:          ELSE
  283: *
  284: *           2 x 2 diagonal block
  285: *
  286: *           Multiply by inv(U**T(K+1)), where U(K+1) is the transformation
  287: *           stored in columns K and K+1 of A.
  288: *
  289:             CALL ZGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB, A( 1, K ),
  290:      $                  1, ONE, B( K, 1 ), LDB )
  291:             CALL ZGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB,
  292:      $                  A( 1, K+1 ), 1, ONE, B( K+1, 1 ), LDB )
  293: *
  294: *           Interchange rows K and -IPIV(K).
  295: *
  296:             KP = -IPIV( K )
  297:             IF( KP.NE.K )
  298:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  299:             K = K + 2
  300:          END IF
  301: *
  302:          GO TO 40
  303:    50    CONTINUE
  304: *
  305:       ELSE
  306: *
  307: *        Solve A*X = B, where A = L*D*L**T.
  308: *
  309: *        First solve L*D*X = B, overwriting B with X.
  310: *
  311: *        K is the main loop index, increasing from 1 to N in steps of
  312: *        1 or 2, depending on the size of the diagonal blocks.
  313: *
  314:          K = 1
  315:    60    CONTINUE
  316: *
  317: *        If K > N, exit from loop.
  318: *
  319:          IF( K.GT.N )
  320:      $      GO TO 80
  321: *
  322:          IF( IPIV( K ).GT.0 ) THEN
  323: *
  324: *           1 x 1 diagonal block
  325: *
  326: *           Interchange rows K and IPIV(K).
  327: *
  328:             KP = IPIV( K )
  329:             IF( KP.NE.K )
  330:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  331: *
  332: *           Multiply by inv(L(K)), where L(K) is the transformation
  333: *           stored in column K of A.
  334: *
  335:             IF( K.LT.N )
  336:      $         CALL ZGERU( N-K, NRHS, -ONE, A( K+1, K ), 1, B( K, 1 ),
  337:      $                     LDB, B( K+1, 1 ), LDB )
  338: *
  339: *           Multiply by the inverse of the diagonal block.
  340: *
  341:             CALL ZSCAL( NRHS, ONE / A( K, K ), B( K, 1 ), LDB )
  342:             K = K + 1
  343:          ELSE
  344: *
  345: *           2 x 2 diagonal block
  346: *
  347: *           Interchange rows K+1 and -IPIV(K).
  348: *
  349:             KP = -IPIV( K )
  350:             IF( KP.NE.K+1 )
  351:      $         CALL ZSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
  352: *
  353: *           Multiply by inv(L(K)), where L(K) is the transformation
  354: *           stored in columns K and K+1 of A.
  355: *
  356:             IF( K.LT.N-1 ) THEN
  357:                CALL ZGERU( N-K-1, NRHS, -ONE, A( K+2, K ), 1, B( K, 1 ),
  358:      $                     LDB, B( K+2, 1 ), LDB )
  359:                CALL ZGERU( N-K-1, NRHS, -ONE, A( K+2, K+1 ), 1,
  360:      $                     B( K+1, 1 ), LDB, B( K+2, 1 ), LDB )
  361:             END IF
  362: *
  363: *           Multiply by the inverse of the diagonal block.
  364: *
  365:             AKM1K = A( K+1, K )
  366:             AKM1 = A( K, K ) / AKM1K
  367:             AK = A( K+1, K+1 ) / AKM1K
  368:             DENOM = AKM1*AK - ONE
  369:             DO 70 J = 1, NRHS
  370:                BKM1 = B( K, J ) / AKM1K
  371:                BK = B( K+1, J ) / AKM1K
  372:                B( K, J ) = ( AK*BKM1-BK ) / DENOM
  373:                B( K+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
  374:    70       CONTINUE
  375:             K = K + 2
  376:          END IF
  377: *
  378:          GO TO 60
  379:    80    CONTINUE
  380: *
  381: *        Next solve L**T *X = B, overwriting B with X.
  382: *
  383: *        K is the main loop index, decreasing from N to 1 in steps of
  384: *        1 or 2, depending on the size of the diagonal blocks.
  385: *
  386:          K = N
  387:    90    CONTINUE
  388: *
  389: *        If K < 1, exit from loop.
  390: *
  391:          IF( K.LT.1 )
  392:      $      GO TO 100
  393: *
  394:          IF( IPIV( K ).GT.0 ) THEN
  395: *
  396: *           1 x 1 diagonal block
  397: *
  398: *           Multiply by inv(L**T(K)), where L(K) is the transformation
  399: *           stored in column K of A.
  400: *
  401:             IF( K.LT.N )
  402:      $         CALL ZGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
  403:      $                     LDB, A( K+1, K ), 1, ONE, B( K, 1 ), LDB )
  404: *
  405: *           Interchange rows K and IPIV(K).
  406: *
  407:             KP = IPIV( K )
  408:             IF( KP.NE.K )
  409:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  410:             K = K - 1
  411:          ELSE
  412: *
  413: *           2 x 2 diagonal block
  414: *
  415: *           Multiply by inv(L**T(K-1)), where L(K-1) is the transformation
  416: *           stored in columns K-1 and K of A.
  417: *
  418:             IF( K.LT.N ) THEN
  419:                CALL ZGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
  420:      $                     LDB, A( K+1, K ), 1, ONE, B( K, 1 ), LDB )
  421:                CALL ZGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
  422:      $                     LDB, A( K+1, K-1 ), 1, ONE, B( K-1, 1 ),
  423:      $                     LDB )
  424:             END IF
  425: *
  426: *           Interchange rows K and -IPIV(K).
  427: *
  428:             KP = -IPIV( K )
  429:             IF( KP.NE.K )
  430:      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  431:             K = K - 2
  432:          END IF
  433: *
  434:          GO TO 90
  435:   100    CONTINUE
  436:       END IF
  437: *
  438:       RETURN
  439: *
  440: *     End of ZSYTRS
  441: *
  442:       END

CVSweb interface <joel.bertrand@systella.fr>