--- rpl/lapack/lapack/zsytrs.f 2010/08/06 15:32:50 1.4
+++ rpl/lapack/lapack/zsytrs.f 2012/12/14 14:22:55 1.12
@@ -1,9 +1,129 @@
+*> \brief \b ZSYTRS
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download ZSYTRS + dependencies
+*>
+*> [TGZ]
+*>
+*> [ZIP]
+*>
+*> [TXT]
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE ZSYTRS( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER UPLO
+* INTEGER INFO, LDA, LDB, N, NRHS
+* ..
+* .. Array Arguments ..
+* INTEGER IPIV( * )
+* COMPLEX*16 A( LDA, * ), B( LDB, * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> ZSYTRS solves a system of linear equations A*X = B with a complex
+*> symmetric matrix A using the factorization A = U*D*U**T or
+*> A = L*D*L**T computed by ZSYTRF.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] UPLO
+*> \verbatim
+*> UPLO is CHARACTER*1
+*> Specifies whether the details of the factorization are stored
+*> as an upper or lower triangular matrix.
+*> = 'U': Upper triangular, form is A = U*D*U**T;
+*> = 'L': Lower triangular, form is A = L*D*L**T.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The order of the matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] NRHS
+*> \verbatim
+*> NRHS is INTEGER
+*> The number of right hand sides, i.e., the number of columns
+*> of the matrix B. NRHS >= 0.
+*> \endverbatim
+*>
+*> \param[in] A
+*> \verbatim
+*> A is COMPLEX*16 array, dimension (LDA,N)
+*> The block diagonal matrix D and the multipliers used to
+*> obtain the factor U or L as computed by ZSYTRF.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,N).
+*> \endverbatim
+*>
+*> \param[in] IPIV
+*> \verbatim
+*> IPIV is INTEGER array, dimension (N)
+*> Details of the interchanges and the block structure of D
+*> as determined by ZSYTRF.
+*> \endverbatim
+*>
+*> \param[in,out] B
+*> \verbatim
+*> B is COMPLEX*16 array, dimension (LDB,NRHS)
+*> On entry, the right hand side matrix B.
+*> On exit, the solution matrix X.
+*> \endverbatim
+*>
+*> \param[in] LDB
+*> \verbatim
+*> LDB is INTEGER
+*> The leading dimension of the array B. LDB >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2011
+*
+*> \ingroup complex16SYcomputational
+*
+* =====================================================================
SUBROUTINE ZSYTRS( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
*
-* -- LAPACK routine (version 3.2) --
+* -- LAPACK computational routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
-* November 2006
+* November 2011
*
* .. Scalar Arguments ..
CHARACTER UPLO
@@ -14,51 +134,6 @@
COMPLEX*16 A( LDA, * ), B( LDB, * )
* ..
*
-* Purpose
-* =======
-*
-* ZSYTRS solves a system of linear equations A*X = B with a complex
-* symmetric matrix A using the factorization A = U*D*U**T or
-* A = L*D*L**T computed by ZSYTRF.
-*
-* Arguments
-* =========
-*
-* UPLO (input) CHARACTER*1
-* Specifies whether the details of the factorization are stored
-* as an upper or lower triangular matrix.
-* = 'U': Upper triangular, form is A = U*D*U**T;
-* = 'L': Lower triangular, form is A = L*D*L**T.
-*
-* N (input) INTEGER
-* The order of the matrix A. N >= 0.
-*
-* NRHS (input) INTEGER
-* The number of right hand sides, i.e., the number of columns
-* of the matrix B. NRHS >= 0.
-*
-* A (input) COMPLEX*16 array, dimension (LDA,N)
-* The block diagonal matrix D and the multipliers used to
-* obtain the factor U or L as computed by ZSYTRF.
-*
-* LDA (input) INTEGER
-* The leading dimension of the array A. LDA >= max(1,N).
-*
-* IPIV (input) INTEGER array, dimension (N)
-* Details of the interchanges and the block structure of D
-* as determined by ZSYTRF.
-*
-* B (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
-* On entry, the right hand side matrix B.
-* On exit, the solution matrix X.
-*
-* LDB (input) INTEGER
-* The leading dimension of the array B. LDB >= max(1,N).
-*
-* INFO (output) INTEGER
-* = 0: successful exit
-* < 0: if INFO = -i, the i-th argument had an illegal value
-*
* =====================================================================
*
* .. Parameters ..
@@ -107,7 +182,7 @@
*
IF( UPPER ) THEN
*
-* Solve A*X = B, where A = U*D*U'.
+* Solve A*X = B, where A = U*D*U**T.
*
* First solve U*D*X = B, overwriting B with X.
*
@@ -178,7 +253,7 @@
GO TO 10
30 CONTINUE
*
-* Next solve U'*X = B, overwriting B with X.
+* Next solve U**T *X = B, overwriting B with X.
*
* K is the main loop index, increasing from 1 to N in steps of
* 1 or 2, depending on the size of the diagonal blocks.
@@ -195,7 +270,7 @@
*
* 1 x 1 diagonal block
*
-* Multiply by inv(U'(K)), where U(K) is the transformation
+* Multiply by inv(U**T(K)), where U(K) is the transformation
* stored in column K of A.
*
CALL ZGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB, A( 1, K ),
@@ -211,7 +286,7 @@
*
* 2 x 2 diagonal block
*
-* Multiply by inv(U'(K+1)), where U(K+1) is the transformation
+* Multiply by inv(U**T(K+1)), where U(K+1) is the transformation
* stored in columns K and K+1 of A.
*
CALL ZGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB, A( 1, K ),
@@ -232,7 +307,7 @@
*
ELSE
*
-* Solve A*X = B, where A = L*D*L'.
+* Solve A*X = B, where A = L*D*L**T.
*
* First solve L*D*X = B, overwriting B with X.
*
@@ -306,7 +381,7 @@
GO TO 60
80 CONTINUE
*
-* Next solve L'*X = B, overwriting B with X.
+* Next solve L**T *X = B, overwriting B with X.
*
* K is the main loop index, decreasing from N to 1 in steps of
* 1 or 2, depending on the size of the diagonal blocks.
@@ -323,7 +398,7 @@
*
* 1 x 1 diagonal block
*
-* Multiply by inv(L'(K)), where L(K) is the transformation
+* Multiply by inv(L**T(K)), where L(K) is the transformation
* stored in column K of A.
*
IF( K.LT.N )
@@ -340,7 +415,7 @@
*
* 2 x 2 diagonal block
*
-* Multiply by inv(L'(K-1)), where L(K-1) is the transformation
+* Multiply by inv(L**T(K-1)), where L(K-1) is the transformation
* stored in columns K-1 and K of A.
*
IF( K.LT.N ) THEN