File:  [local] / rpl / lapack / lapack / zsytri_rook.f
Revision 1.8: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:39 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZSYTRI_ROOK
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZSYTRI_ROOK + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytri_rook.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytri_rook.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytri_rook.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZSYTRI_ROOK( UPLO, N, A, LDA, IPIV, WORK, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          UPLO
   25: *       INTEGER            INFO, LDA, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       COMPLEX*16         A( LDA, * ), WORK( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> ZSYTRI_ROOK computes the inverse of a complex symmetric
   39: *> matrix A using the factorization A = U*D*U**T or A = L*D*L**T
   40: *> computed by ZSYTRF_ROOK.
   41: *> \endverbatim
   42: *
   43: *  Arguments:
   44: *  ==========
   45: *
   46: *> \param[in] UPLO
   47: *> \verbatim
   48: *>          UPLO is CHARACTER*1
   49: *>          Specifies whether the details of the factorization are stored
   50: *>          as an upper or lower triangular matrix.
   51: *>          = 'U':  Upper triangular, form is A = U*D*U**T;
   52: *>          = 'L':  Lower triangular, form is A = L*D*L**T.
   53: *> \endverbatim
   54: *>
   55: *> \param[in] N
   56: *> \verbatim
   57: *>          N is INTEGER
   58: *>          The order of the matrix A.  N >= 0.
   59: *> \endverbatim
   60: *>
   61: *> \param[in,out] A
   62: *> \verbatim
   63: *>          A is COMPLEX*16 array, dimension (LDA,N)
   64: *>          On entry, the block diagonal matrix D and the multipliers
   65: *>          used to obtain the factor U or L as computed by ZSYTRF_ROOK.
   66: *>
   67: *>          On exit, if INFO = 0, the (symmetric) inverse of the original
   68: *>          matrix.  If UPLO = 'U', the upper triangular part of the
   69: *>          inverse is formed and the part of A below the diagonal is not
   70: *>          referenced; if UPLO = 'L' the lower triangular part of the
   71: *>          inverse is formed and the part of A above the diagonal is
   72: *>          not referenced.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] LDA
   76: *> \verbatim
   77: *>          LDA is INTEGER
   78: *>          The leading dimension of the array A.  LDA >= max(1,N).
   79: *> \endverbatim
   80: *>
   81: *> \param[in] IPIV
   82: *> \verbatim
   83: *>          IPIV is INTEGER array, dimension (N)
   84: *>          Details of the interchanges and the block structure of D
   85: *>          as determined by ZSYTRF_ROOK.
   86: *> \endverbatim
   87: *>
   88: *> \param[out] WORK
   89: *> \verbatim
   90: *>          WORK is COMPLEX*16 array, dimension (N)
   91: *> \endverbatim
   92: *>
   93: *> \param[out] INFO
   94: *> \verbatim
   95: *>          INFO is INTEGER
   96: *>          = 0: successful exit
   97: *>          < 0: if INFO = -i, the i-th argument had an illegal value
   98: *>          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
   99: *>               inverse could not be computed.
  100: *> \endverbatim
  101: *
  102: *  Authors:
  103: *  ========
  104: *
  105: *> \author Univ. of Tennessee
  106: *> \author Univ. of California Berkeley
  107: *> \author Univ. of Colorado Denver
  108: *> \author NAG Ltd.
  109: *
  110: *> \ingroup complex16SYcomputational
  111: *
  112: *> \par Contributors:
  113: *  ==================
  114: *>
  115: *> \verbatim
  116: *>
  117: *>   December 2016, Igor Kozachenko,
  118: *>                  Computer Science Division,
  119: *>                  University of California, Berkeley
  120: *>
  121: *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
  122: *>                  School of Mathematics,
  123: *>                  University of Manchester
  124: *>
  125: *> \endverbatim
  126: *
  127: *  =====================================================================
  128:       SUBROUTINE ZSYTRI_ROOK( UPLO, N, A, LDA, IPIV, WORK, INFO )
  129: *
  130: *  -- LAPACK computational routine --
  131: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  132: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  133: *
  134: *     .. Scalar Arguments ..
  135:       CHARACTER          UPLO
  136:       INTEGER            INFO, LDA, N
  137: *     ..
  138: *     .. Array Arguments ..
  139:       INTEGER            IPIV( * )
  140:       COMPLEX*16         A( LDA, * ), WORK( * )
  141: *     ..
  142: *
  143: *  =====================================================================
  144: *
  145: *     .. Parameters ..
  146:       COMPLEX*16         CONE, CZERO
  147:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ),
  148:      $                   CZERO = ( 0.0D+0, 0.0D+0 ) )
  149: *     ..
  150: *     .. Local Scalars ..
  151:       LOGICAL            UPPER
  152:       INTEGER            K, KP, KSTEP
  153:       COMPLEX*16         AK, AKKP1, AKP1, D, T, TEMP
  154: *     ..
  155: *     .. External Functions ..
  156:       LOGICAL            LSAME
  157:       COMPLEX*16         ZDOTU
  158:       EXTERNAL           LSAME, ZDOTU
  159: *     ..
  160: *     .. External Subroutines ..
  161:       EXTERNAL           ZCOPY, ZSWAP, ZSYMV, XERBLA
  162: *     ..
  163: *     .. Intrinsic Functions ..
  164:       INTRINSIC          MAX
  165: *     ..
  166: *     .. Executable Statements ..
  167: *
  168: *     Test the input parameters.
  169: *
  170:       INFO = 0
  171:       UPPER = LSAME( UPLO, 'U' )
  172:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  173:          INFO = -1
  174:       ELSE IF( N.LT.0 ) THEN
  175:          INFO = -2
  176:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  177:          INFO = -4
  178:       END IF
  179:       IF( INFO.NE.0 ) THEN
  180:          CALL XERBLA( 'ZSYTRI_ROOK', -INFO )
  181:          RETURN
  182:       END IF
  183: *
  184: *     Quick return if possible
  185: *
  186:       IF( N.EQ.0 )
  187:      $   RETURN
  188: *
  189: *     Check that the diagonal matrix D is nonsingular.
  190: *
  191:       IF( UPPER ) THEN
  192: *
  193: *        Upper triangular storage: examine D from bottom to top
  194: *
  195:          DO 10 INFO = N, 1, -1
  196:             IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.CZERO )
  197:      $         RETURN
  198:    10    CONTINUE
  199:       ELSE
  200: *
  201: *        Lower triangular storage: examine D from top to bottom.
  202: *
  203:          DO 20 INFO = 1, N
  204:             IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.CZERO )
  205:      $         RETURN
  206:    20    CONTINUE
  207:       END IF
  208:       INFO = 0
  209: *
  210:       IF( UPPER ) THEN
  211: *
  212: *        Compute inv(A) from the factorization A = U*D*U**T.
  213: *
  214: *        K is the main loop index, increasing from 1 to N in steps of
  215: *        1 or 2, depending on the size of the diagonal blocks.
  216: *
  217:          K = 1
  218:    30    CONTINUE
  219: *
  220: *        If K > N, exit from loop.
  221: *
  222:          IF( K.GT.N )
  223:      $      GO TO 40
  224: *
  225:          IF( IPIV( K ).GT.0 ) THEN
  226: *
  227: *           1 x 1 diagonal block
  228: *
  229: *           Invert the diagonal block.
  230: *
  231:             A( K, K ) = CONE / A( K, K )
  232: *
  233: *           Compute column K of the inverse.
  234: *
  235:             IF( K.GT.1 ) THEN
  236:                CALL ZCOPY( K-1, A( 1, K ), 1, WORK, 1 )
  237:                CALL ZSYMV( UPLO, K-1, -CONE, A, LDA, WORK, 1, CZERO,
  238:      $                     A( 1, K ), 1 )
  239:                A( K, K ) = A( K, K ) - ZDOTU( K-1, WORK, 1, A( 1, K ),
  240:      $                     1 )
  241:             END IF
  242:             KSTEP = 1
  243:          ELSE
  244: *
  245: *           2 x 2 diagonal block
  246: *
  247: *           Invert the diagonal block.
  248: *
  249:             T = A( K, K+1 )
  250:             AK = A( K, K ) / T
  251:             AKP1 = A( K+1, K+1 ) / T
  252:             AKKP1 = A( K, K+1 ) / T
  253:             D = T*( AK*AKP1-CONE )
  254:             A( K, K ) = AKP1 / D
  255:             A( K+1, K+1 ) = AK / D
  256:             A( K, K+1 ) = -AKKP1 / D
  257: *
  258: *           Compute columns K and K+1 of the inverse.
  259: *
  260:             IF( K.GT.1 ) THEN
  261:                CALL ZCOPY( K-1, A( 1, K ), 1, WORK, 1 )
  262:                CALL ZSYMV( UPLO, K-1, -CONE, A, LDA, WORK, 1, CZERO,
  263:      $                     A( 1, K ), 1 )
  264:                A( K, K ) = A( K, K ) - ZDOTU( K-1, WORK, 1, A( 1, K ),
  265:      $                     1 )
  266:                A( K, K+1 ) = A( K, K+1 ) -
  267:      $                       ZDOTU( K-1, A( 1, K ), 1, A( 1, K+1 ), 1 )
  268:                CALL ZCOPY( K-1, A( 1, K+1 ), 1, WORK, 1 )
  269:                CALL ZSYMV( UPLO, K-1, -CONE, A, LDA, WORK, 1, CZERO,
  270:      $                     A( 1, K+1 ), 1 )
  271:                A( K+1, K+1 ) = A( K+1, K+1 ) -
  272:      $                         ZDOTU( K-1, WORK, 1, A( 1, K+1 ), 1 )
  273:             END IF
  274:             KSTEP = 2
  275:          END IF
  276: *
  277:          IF( KSTEP.EQ.1 ) THEN
  278: *
  279: *           Interchange rows and columns K and IPIV(K) in the leading
  280: *           submatrix A(1:k+1,1:k+1)
  281: *
  282:             KP = IPIV( K )
  283:             IF( KP.NE.K ) THEN
  284:                IF( KP.GT.1 )
  285:      $             CALL ZSWAP( KP-1, A( 1, K ), 1, A( 1, KP ), 1 )
  286:                CALL ZSWAP( K-KP-1, A( KP+1, K ), 1, A( KP, KP+1 ), LDA )
  287:                TEMP = A( K, K )
  288:                A( K, K ) = A( KP, KP )
  289:                A( KP, KP ) = TEMP
  290:             END IF
  291:          ELSE
  292: *
  293: *           Interchange rows and columns K and K+1 with -IPIV(K) and
  294: *           -IPIV(K+1)in the leading submatrix A(1:k+1,1:k+1)
  295: *
  296:             KP = -IPIV( K )
  297:             IF( KP.NE.K ) THEN
  298:                IF( KP.GT.1 )
  299:      $            CALL ZSWAP( KP-1, A( 1, K ), 1, A( 1, KP ), 1 )
  300:                CALL ZSWAP( K-KP-1, A( KP+1, K ), 1, A( KP, KP+1 ), LDA )
  301: *
  302:                TEMP = A( K, K )
  303:                A( K, K ) = A( KP, KP )
  304:                A( KP, KP ) = TEMP
  305:                TEMP = A( K, K+1 )
  306:                A( K, K+1 ) = A( KP, K+1 )
  307:                A( KP, K+1 ) = TEMP
  308:             END IF
  309: *
  310:             K = K + 1
  311:             KP = -IPIV( K )
  312:             IF( KP.NE.K ) THEN
  313:                IF( KP.GT.1 )
  314:      $            CALL ZSWAP( KP-1, A( 1, K ), 1, A( 1, KP ), 1 )
  315:                CALL ZSWAP( K-KP-1, A( KP+1, K ), 1, A( KP, KP+1 ), LDA )
  316:                TEMP = A( K, K )
  317:                A( K, K ) = A( KP, KP )
  318:                A( KP, KP ) = TEMP
  319:             END IF
  320:          END IF
  321: *
  322:          K = K + 1
  323:          GO TO 30
  324:    40    CONTINUE
  325: *
  326:       ELSE
  327: *
  328: *        Compute inv(A) from the factorization A = L*D*L**T.
  329: *
  330: *        K is the main loop index, increasing from 1 to N in steps of
  331: *        1 or 2, depending on the size of the diagonal blocks.
  332: *
  333:          K = N
  334:    50    CONTINUE
  335: *
  336: *        If K < 1, exit from loop.
  337: *
  338:          IF( K.LT.1 )
  339:      $      GO TO 60
  340: *
  341:          IF( IPIV( K ).GT.0 ) THEN
  342: *
  343: *           1 x 1 diagonal block
  344: *
  345: *           Invert the diagonal block.
  346: *
  347:             A( K, K ) = CONE / A( K, K )
  348: *
  349: *           Compute column K of the inverse.
  350: *
  351:             IF( K.LT.N ) THEN
  352:                CALL ZCOPY( N-K, A( K+1, K ), 1, WORK, 1 )
  353:                CALL ZSYMV( UPLO, N-K,-CONE, A( K+1, K+1 ), LDA, WORK, 1,
  354:      $                     CZERO, A( K+1, K ), 1 )
  355:                A( K, K ) = A( K, K ) - ZDOTU( N-K, WORK, 1, A( K+1, K ),
  356:      $                     1 )
  357:             END IF
  358:             KSTEP = 1
  359:          ELSE
  360: *
  361: *           2 x 2 diagonal block
  362: *
  363: *           Invert the diagonal block.
  364: *
  365:             T = A( K, K-1 )
  366:             AK = A( K-1, K-1 ) / T
  367:             AKP1 = A( K, K ) / T
  368:             AKKP1 = A( K, K-1 ) / T
  369:             D = T*( AK*AKP1-CONE )
  370:             A( K-1, K-1 ) = AKP1 / D
  371:             A( K, K ) = AK / D
  372:             A( K, K-1 ) = -AKKP1 / D
  373: *
  374: *           Compute columns K-1 and K of the inverse.
  375: *
  376:             IF( K.LT.N ) THEN
  377:                CALL ZCOPY( N-K, A( K+1, K ), 1, WORK, 1 )
  378:                CALL ZSYMV( UPLO, N-K,-CONE, A( K+1, K+1 ), LDA, WORK, 1,
  379:      $                     CZERO, A( K+1, K ), 1 )
  380:                A( K, K ) = A( K, K ) - ZDOTU( N-K, WORK, 1, A( K+1, K ),
  381:      $                     1 )
  382:                A( K, K-1 ) = A( K, K-1 ) -
  383:      $                       ZDOTU( N-K, A( K+1, K ), 1, A( K+1, K-1 ),
  384:      $                       1 )
  385:                CALL ZCOPY( N-K, A( K+1, K-1 ), 1, WORK, 1 )
  386:                CALL ZSYMV( UPLO, N-K,-CONE, A( K+1, K+1 ), LDA, WORK, 1,
  387:      $                     CZERO, A( K+1, K-1 ), 1 )
  388:                A( K-1, K-1 ) = A( K-1, K-1 ) -
  389:      $                         ZDOTU( N-K, WORK, 1, A( K+1, K-1 ), 1 )
  390:             END IF
  391:             KSTEP = 2
  392:          END IF
  393: *
  394:          IF( KSTEP.EQ.1 ) THEN
  395: *
  396: *           Interchange rows and columns K and IPIV(K) in the trailing
  397: *           submatrix A(k-1:n,k-1:n)
  398: *
  399:             KP = IPIV( K )
  400:             IF( KP.NE.K ) THEN
  401:                IF( KP.LT.N )
  402:      $            CALL ZSWAP( N-KP, A( KP+1, K ), 1, A( KP+1, KP ), 1 )
  403:                CALL ZSWAP( KP-K-1, A( K+1, K ), 1, A( KP, K+1 ), LDA )
  404:                TEMP = A( K, K )
  405:                A( K, K ) = A( KP, KP )
  406:                A( KP, KP ) = TEMP
  407:             END IF
  408:          ELSE
  409: *
  410: *           Interchange rows and columns K and K-1 with -IPIV(K) and
  411: *           -IPIV(K-1) in the trailing submatrix A(k-1:n,k-1:n)
  412: *
  413:             KP = -IPIV( K )
  414:             IF( KP.NE.K ) THEN
  415:                IF( KP.LT.N )
  416:      $            CALL ZSWAP( N-KP, A( KP+1, K ), 1, A( KP+1, KP ), 1 )
  417:                CALL ZSWAP( KP-K-1, A( K+1, K ), 1, A( KP, K+1 ), LDA )
  418: *
  419:                TEMP = A( K, K )
  420:                A( K, K ) = A( KP, KP )
  421:                A( KP, KP ) = TEMP
  422:                TEMP = A( K, K-1 )
  423:                A( K, K-1 ) = A( KP, K-1 )
  424:                A( KP, K-1 ) = TEMP
  425:             END IF
  426: *
  427:             K = K - 1
  428:             KP = -IPIV( K )
  429:             IF( KP.NE.K ) THEN
  430:                IF( KP.LT.N )
  431:      $            CALL ZSWAP( N-KP, A( KP+1, K ), 1, A( KP+1, KP ), 1 )
  432:                CALL ZSWAP( KP-K-1, A( K+1, K ), 1, A( KP, K+1 ), LDA )
  433:                TEMP = A( K, K )
  434:                A( K, K ) = A( KP, KP )
  435:                A( KP, KP ) = TEMP
  436:             END IF
  437:          END IF
  438: *
  439:          K = K - 1
  440:          GO TO 50
  441:    60    CONTINUE
  442:       END IF
  443: *
  444:       RETURN
  445: *
  446: *     End of ZSYTRI_ROOK
  447: *
  448:       END

CVSweb interface <joel.bertrand@systella.fr>